Skip to content

Repvgg block

RepVGGBlock

Bases: nn.Module

Repvgg block consists of three branches 3x3: a branch of a 3x3 Convolution + BatchNorm + Activation 1x1: a branch of a 1x1 Convolution + BatchNorm + Activation no_conv_branch: a branch with only BatchNorm which will only be used if input channel == output channel and use_residual_connection is True (usually in all but the first block of each stage)

Source code in src/super_gradients/modules/repvgg_block.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class RepVGGBlock(nn.Module):
    """
    Repvgg block consists of three branches
    3x3: a branch of a 3x3 Convolution + BatchNorm + Activation
    1x1: a branch of a 1x1 Convolution + BatchNorm + Activation
    no_conv_branch: a branch with only BatchNorm which will only be used if
        input channel == output channel and use_residual_connection is True
    (usually in all but the first block of each stage)
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        stride: int = 1,
        dilation: int = 1,
        groups: int = 1,
        activation_type: Type[nn.Module] = nn.ReLU,
        activation_kwargs: Union[Mapping[str, Any], None] = None,
        se_type: Type[nn.Module] = nn.Identity,
        se_kwargs: Union[Mapping[str, Any], None] = None,
        build_residual_branches: bool = True,
        use_residual_connection: bool = True,
        use_alpha: bool = False,
    ):
        """

        :param in_channels: Number of input channels
        :param out_channels: Number of output channels
        :param activation_type: Type of the nonlinearity
        :param se_type: Type of the se block (Use nn.Identity to disable SE)
        :param stride: Output stride
        :param dilation: Dilation factor for 3x3 conv
        :param groups: Number of groups used in convolutions
        :param activation_kwargs: Additional arguments for instantiating activation module.
        :param se_kwargs: Additional arguments for instantiating SE module.
        :param build_residual_branches: Whether to initialize block with already fused paramters (for deployment)
        :param use_residual_connection: Whether to add input x to the output (Enabled in RepVGG, disabled in PP-Yolo)
        :param use_alpha: If True, enables additional learnable weighting parameter for 1x1 branch (PP-Yolo-E Plus)
        """
        super().__init__()

        if activation_kwargs is None:
            activation_kwargs = {}
        if se_kwargs is None:
            se_kwargs = {}

        self.groups = groups
        self.in_channels = in_channels

        self.nonlinearity = activation_type(**activation_kwargs)
        self.se = se_type(**se_kwargs)

        if use_residual_connection and out_channels == in_channels and stride == 1:
            self.no_conv_branch = nn.BatchNorm2d(num_features=in_channels)
        else:
            self.no_conv_branch = None

        self.branch_3x3 = self._conv_bn(
            in_channels=in_channels,
            out_channels=out_channels,
            dilation=dilation,
            kernel_size=3,
            stride=stride,
            padding=dilation,
            groups=groups,
        )
        self.branch_1x1 = self._conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, groups=groups)

        if use_alpha:
            # If we are using alpha, we need to add some noise to the initial value of 1
            # When we are benchmarking the model we usually use random weights,
            # so when ONNX simplifies the model it will remove multiplication of alpha * residual branch and
            # replace it with simple addition (Since 1 * has no effect)
            # To prevent this we add some noise to the initial value of alpha which prevents this from happening
            # but since the noise is very small it should not affect the training process
            noise = torch.randn((1,)) * 0.01
            self.alpha = torch.nn.Parameter(torch.tensor([1.0]) + noise, requires_grad=True)
        else:
            self.alpha = 1

        if not build_residual_branches:
            self.fuse_block_residual_branches()
        else:
            self.build_residual_branches = True

    def forward(self, inputs):
        if not self.build_residual_branches:
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.no_conv_branch is None:
            id_out = 0
        else:
            id_out = self.no_conv_branch(inputs)

        return self.nonlinearity(self.se(self.branch_3x3(inputs) + self.alpha * self.branch_1x1(inputs) + id_out))

    def _get_equivalent_kernel_bias(self):
        """
        Fuses the 3x3, 1x1 and identity branches into a single 3x3 conv layer
        """
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.branch_3x3)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.branch_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.no_conv_branch)
        return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + self.alpha * bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        """
        padding the 1x1 convolution weights with zeros to be able to fuse the 3x3 conv layer with the 1x1
        :param kernel1x1: weights of the 1x1 convolution
        :type kernel1x1:
        :return: padded 1x1 weights
        :rtype:
        """
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        """
        Fusing of the batchnorm into the conv layer.
        If the branch is the identity branch (no conv) the kernel will simply be eye.
        :param branch:
        :type branch:
        :return:
        :rtype:
        """
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, "id_tensor"):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def fuse_block_residual_branches(self):
        """
        converts a repvgg block from training model (with branches) to deployment mode (vgg like model)
        :return:
        :rtype:
        """
        if hasattr(self, "build_residual_branches") and not self.build_residual_branches:
            return
        kernel, bias = self._get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(
            in_channels=self.branch_3x3.conv.in_channels,
            out_channels=self.branch_3x3.conv.out_channels,
            kernel_size=self.branch_3x3.conv.kernel_size,
            stride=self.branch_3x3.conv.stride,
            padding=self.branch_3x3.conv.padding,
            dilation=self.branch_3x3.conv.dilation,
            groups=self.branch_3x3.conv.groups,
            bias=True,
        )
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__("branch_3x3")
        self.__delattr__("branch_1x1")
        if hasattr(self, "no_conv_branch"):
            self.__delattr__("no_conv_branch")
        if hasattr(self, "alpha"):
            self.__delattr__("alpha")
        self.build_residual_branches = False

    @staticmethod
    def _conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1, dilation=1):
        result = nn.Sequential()
        result.add_module(
            "conv",
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                groups=groups,
                bias=False,
                dilation=dilation,
            ),
        )
        result.add_module("bn", nn.BatchNorm2d(num_features=out_channels))
        return result

    def prep_model_for_conversion(self, input_size: Optional[Union[tuple, list]] = None, **kwargs):
        self.fuse_block_residual_branches()

__init__(in_channels, out_channels, stride=1, dilation=1, groups=1, activation_type=nn.ReLU, activation_kwargs=None, se_type=nn.Identity, se_kwargs=None, build_residual_branches=True, use_residual_connection=True, use_alpha=False)

Parameters:

Name Type Description Default
in_channels int

Number of input channels

required
out_channels int

Number of output channels

required
activation_type Type[nn.Module]

Type of the nonlinearity

nn.ReLU
se_type Type[nn.Module]

Type of the se block (Use nn.Identity to disable SE)

nn.Identity
stride int

Output stride

1
dilation int

Dilation factor for 3x3 conv

1
groups int

Number of groups used in convolutions

1
activation_kwargs Union[Mapping[str, Any], None]

Additional arguments for instantiating activation module.

None
se_kwargs Union[Mapping[str, Any], None]

Additional arguments for instantiating SE module.

None
build_residual_branches bool

Whether to initialize block with already fused paramters (for deployment)

True
use_residual_connection bool

Whether to add input x to the output (Enabled in RepVGG, disabled in PP-Yolo)

True
use_alpha bool

If True, enables additional learnable weighting parameter for 1x1 branch (PP-Yolo-E Plus)

False
Source code in src/super_gradients/modules/repvgg_block.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def __init__(
    self,
    in_channels: int,
    out_channels: int,
    stride: int = 1,
    dilation: int = 1,
    groups: int = 1,
    activation_type: Type[nn.Module] = nn.ReLU,
    activation_kwargs: Union[Mapping[str, Any], None] = None,
    se_type: Type[nn.Module] = nn.Identity,
    se_kwargs: Union[Mapping[str, Any], None] = None,
    build_residual_branches: bool = True,
    use_residual_connection: bool = True,
    use_alpha: bool = False,
):
    """

    :param in_channels: Number of input channels
    :param out_channels: Number of output channels
    :param activation_type: Type of the nonlinearity
    :param se_type: Type of the se block (Use nn.Identity to disable SE)
    :param stride: Output stride
    :param dilation: Dilation factor for 3x3 conv
    :param groups: Number of groups used in convolutions
    :param activation_kwargs: Additional arguments for instantiating activation module.
    :param se_kwargs: Additional arguments for instantiating SE module.
    :param build_residual_branches: Whether to initialize block with already fused paramters (for deployment)
    :param use_residual_connection: Whether to add input x to the output (Enabled in RepVGG, disabled in PP-Yolo)
    :param use_alpha: If True, enables additional learnable weighting parameter for 1x1 branch (PP-Yolo-E Plus)
    """
    super().__init__()

    if activation_kwargs is None:
        activation_kwargs = {}
    if se_kwargs is None:
        se_kwargs = {}

    self.groups = groups
    self.in_channels = in_channels

    self.nonlinearity = activation_type(**activation_kwargs)
    self.se = se_type(**se_kwargs)

    if use_residual_connection and out_channels == in_channels and stride == 1:
        self.no_conv_branch = nn.BatchNorm2d(num_features=in_channels)
    else:
        self.no_conv_branch = None

    self.branch_3x3 = self._conv_bn(
        in_channels=in_channels,
        out_channels=out_channels,
        dilation=dilation,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
    )
    self.branch_1x1 = self._conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, groups=groups)

    if use_alpha:
        # If we are using alpha, we need to add some noise to the initial value of 1
        # When we are benchmarking the model we usually use random weights,
        # so when ONNX simplifies the model it will remove multiplication of alpha * residual branch and
        # replace it with simple addition (Since 1 * has no effect)
        # To prevent this we add some noise to the initial value of alpha which prevents this from happening
        # but since the noise is very small it should not affect the training process
        noise = torch.randn((1,)) * 0.01
        self.alpha = torch.nn.Parameter(torch.tensor([1.0]) + noise, requires_grad=True)
    else:
        self.alpha = 1

    if not build_residual_branches:
        self.fuse_block_residual_branches()
    else:
        self.build_residual_branches = True

fuse_block_residual_branches()

converts a repvgg block from training model (with branches) to deployment mode (vgg like model)

Returns:

Type Description
Source code in src/super_gradients/modules/repvgg_block.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def fuse_block_residual_branches(self):
    """
    converts a repvgg block from training model (with branches) to deployment mode (vgg like model)
    :return:
    :rtype:
    """
    if hasattr(self, "build_residual_branches") and not self.build_residual_branches:
        return
    kernel, bias = self._get_equivalent_kernel_bias()
    self.rbr_reparam = nn.Conv2d(
        in_channels=self.branch_3x3.conv.in_channels,
        out_channels=self.branch_3x3.conv.out_channels,
        kernel_size=self.branch_3x3.conv.kernel_size,
        stride=self.branch_3x3.conv.stride,
        padding=self.branch_3x3.conv.padding,
        dilation=self.branch_3x3.conv.dilation,
        groups=self.branch_3x3.conv.groups,
        bias=True,
    )
    self.rbr_reparam.weight.data = kernel
    self.rbr_reparam.bias.data = bias
    for para in self.parameters():
        para.detach_()
    self.__delattr__("branch_3x3")
    self.__delattr__("branch_1x1")
    if hasattr(self, "no_conv_branch"):
        self.__delattr__("no_conv_branch")
    if hasattr(self, "alpha"):
        self.__delattr__("alpha")
    self.build_residual_branches = False

fuse_repvgg_blocks_residual_branches(model)

Call fuse_block_residual_branches for all repvgg blocks in the model

Parameters:

Name Type Description Default
model nn.Module

torch.nn.Module with repvgg blocks. Doesn't have to be entirely consists of repvgg.

required
Source code in src/super_gradients/modules/repvgg_block.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def fuse_repvgg_blocks_residual_branches(model: nn.Module):
    """
    Call fuse_block_residual_branches for all repvgg blocks in the model
    :param model: torch.nn.Module with repvgg blocks. Doesn't have to be entirely consists of repvgg.
    :type model: torch.nn.Module
    """
    if model.training:
        raise RuntimeError("To fuse RepVGG block residual branches, model must be on eval mode")
    from super_gradients.training.utils.utils import infer_model_device

    device = infer_model_device(model)
    for module in model.modules():
        if hasattr(module, "fuse_block_residual_branches"):
            module.fuse_block_residual_branches()
    model.build_residual_branches = False
    model.to(device)