Qarepvgg block
QARepVGGBlock
Bases: nn.Module
QARepVGG (S3/S4) block from 'Make RepVGG Greater Again: A Quantization-aware Approach' (https://arxiv.org/pdf/2212.01593.pdf) It consists of three branches:
3x3: a branch of a 3x3 Convolution + BatchNorm 1x1: a branch of a 1x1 Convolution with bias identity: a Residual branch which will only be used if input channel == output channel and use_residual_connection is True (usually in all but the first block of each stage)
BatchNorm is applied after summation of all three branches. In contrast to our implementation of RepVGGBlock, SE is applied AFTER NONLINEARITY in order to fuse Conv+Act in inference frameworks.
This module converts to Conv+Act in a PTQ-friendly way by calling QARepVGGBlock.fuse_block_residual_branches(). Has the same API as RepVGGBlock and is designed to be a plug-and-play replacement but is not compatible parameter-wise. Has less trainable parameters than RepVGGBlock because it has only 2 BatchNorms instead of 3.
|
|
|---------------|---------------|
| | |
3x3 1x1 | | | | BatchNorm +bias | | | | | *alpha | | | | |---------------+---------------| | BatchNorm | Act | SE
Source code in modules/qarepvgg_block.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
__init__(in_channels, out_channels, stride=1, dilation=1, groups=1, activation_type=nn.ReLU, activation_kwargs=None, se_type=nn.Identity, se_kwargs=None, build_residual_branches=True, use_residual_connection=True, use_alpha=False, use_1x1_bias=True, use_post_bn=True)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels |
int
|
Number of input channels |
required |
out_channels |
int
|
Number of output channels |
required |
activation_type |
Type[nn.Module]
|
Type of the nonlinearity (nn.ReLU by default) |
nn.ReLU
|
se_type |
Type[nn.Module]
|
Type of the se block (Use nn.Identity to disable SE) |
nn.Identity
|
stride |
int
|
Output stride |
1
|
dilation |
int
|
Dilation factor for 3x3 conv |
1
|
groups |
int
|
Number of groups used in convolutions |
1
|
activation_kwargs |
Union[Mapping[str, Any], None]
|
Additional arguments for instantiating activation module. |
None
|
se_kwargs |
Union[Mapping[str, Any], None]
|
Additional arguments for instantiating SE module. |
None
|
build_residual_branches |
bool
|
Whether to initialize block with already fused parameters (for deployment) |
True
|
use_residual_connection |
bool
|
Whether to add input x to the output (Enabled in RepVGG, disabled in PP-Yolo) |
True
|
use_alpha |
bool
|
If True, enables additional learnable weighting parameter for 1x1 branch (PP-Yolo-E Plus) |
False
|
use_1x1_bias |
bool
|
If True, enables bias in the 1x1 convolution, authors don't mention it specifically |
True
|
use_post_bn |
bool
|
If True, adds BatchNorm after the sum of three branches (S4), if False, BatchNorm is not added (S3) |
True
|
Source code in modules/qarepvgg_block.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
full_fusion()
Fuse everything into Conv-Act-SE, non-trainable, parameters detached converts a qarepvgg block from training model (with branches) to deployment mode (vgg like model)
Returns:
Type | Description |
---|---|
Source code in modules/qarepvgg_block.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
partial_fusion()
Fuse branches into a single kernel, leave post_bn unfused, leave parameters differentiable
Source code in modules/qarepvgg_block.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|