Recipes
Training Recipes
We defined recipes to ensure that anyone can reproduce our results in the most simple way.
Setup
To run recipes you first need to clone the super-gradients repository:
git clone https://github.com/Deci-AI/super-gradients
You then need to move to the root of the clone project (where you find "requirements.txt" and "setup.py") and install super-gradients:
pip install -e .
Finally, append super-gradients to the python path: (Replace "YOUR-LOCAL-PATH" with the path to the downloaded repo)
export PYTHONPATH=$PYTHONPATH:<YOUR-LOCAL-PATH>/super-gradients/
How to run a recipe
The recipes are defined in .yaml format and we use the hydra library to allow you to easily customize the parameters. The basic basic syntax is as follow:
python -m super_gradients.train_from_recipe --config-name=<CONFIG-NAME> dataset_params.data_dir=<PATH-TO-DATASET>
Explore our recipes
You can find all of our recipes here. You will find information about the performance of a recipe as well as the command to execute it in the header of its config file.
Example: Training of YoloX Small on Coco 2017, using 8 GPU
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_s dataset_params.data_dir=/home/coco2017
List of commands
All the commands to launch the recipes described here are listed below.
Please make to "dataset_params.data_dir=
- Classification
Cifar10
resnetpython -m super_gradients.train_from_recipe --config-name=cifar10_resnet +experiment_name=cifar10
ImageNet
efficientnetpython -m super_gradients.train_from_recipe --config-name=imagenet_efficientnet
python -m super_gradients.train_from_recipe --config-name=imagenet_mobilenetv2
python -m super_gradients.train_from_recipe --config-name=imagenet_mobilenetv3_small
python -m super_gradients.train_from_recipe --config-name=imagenet_mobilenetv3_large
python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY200
python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY400
python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY600
python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800
python -m super_gradients.train_from_recipe --config-name=imagenet_repvgg
python -m super_gradients.train_from_recipe --config-name=imagenet_resnet50
python -m super_gradients.train_from_kd_recipe --config-name=imagenet_resnet50_kd
python -m super_gradients.train_from_recipe --config-name=imagenet_vit_base
python -m super_gradients.train_from_recipe --config-name=imagenet_vit_large
- Detection
Coco2017
ssd_lite_mobilenet_v2python -m super_gradients.train_from_recipe --config-name=coco2017_ssd_lite_mobilenet_v2
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_n
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_t
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_s
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_m
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_l
python -m super_gradients.train_from_recipe --config-name=coco2017_yolox architecture=yolox_x
- Segmentation
Cityscapes
DDRNet23python -m super_gradients.train_from_recipe --config-name=cityscapes_ddrnet
python -m super_gradients.train_from_recipe --config-name=cityscapes_ddrnet architecture=ddrnet_23_slim
python -m super_gradients.train_from_recipe --config-name=cityscapes_regseg48
python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg50
python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg50 architecture=stdc2_seg
python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg75
python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg75 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg