Skip to content

Sg trainer

Trainer

SuperGradient Model - Base Class for Sg Models

Methods

train(max_epochs : int, initial_epoch : int, save_model : bool) the main function used for the training, h.p. updating, logging etc.

predict(idx : int) returns the predictions and label of the current inputs

test(epoch : int, idx : int, save : bool): returns the test loss, accuracy and runtime

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
class Trainer:
    """
    SuperGradient Model - Base Class for Sg Models

    Methods
    -------
    train(max_epochs : int, initial_epoch : int, save_model : bool)
        the main function used for the training, h.p. updating, logging etc.

    predict(idx : int)
        returns the predictions and label of the current inputs

    test(epoch : int, idx : int, save : bool):
        returns the test loss, accuracy and runtime
    """

    def __init__(self, experiment_name: str, device: Optional[str] = None, multi_gpu: Union[MultiGPUMode, str] = None, ckpt_root_dir: Optional[str] = None):
        """

        :param experiment_name:                 Used for logging and loading purposes
        :param device:                          If equal to 'cpu' runs on the CPU otherwise on GPU
        :param multi_gpu:                       If True, runs on all available devices
                                                otherwise saves the Checkpoints Locally
                                                checkpoint from cloud service, otherwise overwrites the local checkpoints file
        :param ckpt_root_dir:                   Local root directory path where all experiment logging directories will
                                                reside. When none is give, it is assumed that
                                                pkg_resources.resource_filename('checkpoints', "") exists and will be used.

        """

        # This should later me removed
        if device is not None or multi_gpu is not None:
            raise KeyError(
                "Trainer does not accept anymore 'device' and 'multi_gpu' as argument. "
                "Both should instead be passed to "
                "super_gradients.setup_device(device=..., multi_gpu=..., num_gpus=...)"
            )

        if require_ddp_setup():
            raise DDPNotSetupException()

        # SET THE EMPTY PROPERTIES
        self.net, self.architecture, self.arch_params, self.dataset_interface = None, None, None, None
        self.train_loader, self.valid_loader, self.test_loaders = None, None, {}
        self.ema = None
        self.ema_model = None
        self.sg_logger = None
        self.update_param_groups = None
        self.criterion = None
        self.training_params = None
        self.scaler = None
        self.phase_callbacks = None
        self.checkpoint_params = None
        self.pre_prediction_callback = None

        # SET THE DEFAULT PROPERTIES
        self.half_precision = False
        self.load_backbone = False
        self.load_weights_only = False
        self.ddp_silent_mode = is_ddp_subprocess()

        self.model_weight_averaging = None
        self.average_model_checkpoint_filename = "average_model.pth"
        self.start_epoch = 0
        self.best_metric = np.inf
        self.load_ema_as_net = False

        self._first_backward = True

        # METRICS
        self.loss_logging_items_names = None
        self.train_metrics: Optional[MetricCollection] = None
        self.valid_metrics: Optional[MetricCollection] = None
        self.test_metrics: Optional[MetricCollection] = None
        self.greater_metric_to_watch_is_better = None
        self.metric_to_watch = None
        self.greater_train_metrics_is_better: Dict[str, bool] = {}  # For each metric, indicates if greater is better
        self.greater_valid_metrics_is_better: Dict[str, bool] = {}

        # Checkpoint Attributes
        self.ckpt_root_dir = ckpt_root_dir
        self.experiment_name = experiment_name
        self.checkpoints_dir_path = None
        self.load_checkpoint = False
        self.ckpt_best_name = "ckpt_best.pth"

        self.phase_callback_handler: CallbackHandler = None

        # SET THE DEFAULTS
        # TODO: SET DEFAULT TRAINING PARAMS FOR EACH TASK

        default_results_titles = ["Train Loss", "Train Acc", "Train Top5", "Valid Loss", "Valid Acc", "Valid Top5"]

        self.results_titles = default_results_titles

        default_train_metrics, default_valid_metrics = MetricCollection([Accuracy(), Top5()]), MetricCollection([Accuracy(), Top5()])

        self.train_metrics, self.valid_metrics = default_train_metrics, default_valid_metrics

        self.train_monitored_values = {}
        self.valid_monitored_values = {}
        self.test_monitored_values = {}
        self.max_train_batches = None
        self.max_valid_batches = None

        self._epoch_start_logging_values = {}
        self._torch_lr_scheduler = None

    @property
    def device(self) -> str:
        return device_config.device

    @classmethod
    def train_from_config(cls, cfg: Union[DictConfig, dict]) -> Tuple[nn.Module, Tuple]:
        """
        Trains according to cfg recipe configuration.

        :param cfg: The parsed DictConfig from yaml recipe files or a dictionary
        :return: the model and the output of trainer.train(...) (i.e results tuple)
        """

        # TODO: bind checkpoint_run_id
        setup_device(
            device=core_utils.get_param(cfg, "device"),
            multi_gpu=core_utils.get_param(cfg, "multi_gpu"),
            num_gpus=core_utils.get_param(cfg, "num_gpus"),
        )

        # INSTANTIATE ALL OBJECTS IN CFG
        cfg = hydra.utils.instantiate(cfg)

        # TRIGGER CFG MODIFYING CALLBACKS
        cfg = cls._trigger_cfg_modifying_callbacks(cfg)

        trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir)

        # BUILD NETWORK
        model = models.get(
            model_name=cfg.architecture,
            num_classes=cfg.arch_params.num_classes,
            arch_params=cfg.arch_params,
            strict_load=cfg.checkpoint_params.strict_load,
            pretrained_weights=cfg.checkpoint_params.pretrained_weights,
            checkpoint_path=cfg.checkpoint_params.checkpoint_path,
            load_backbone=cfg.checkpoint_params.load_backbone,
        )

        # INSTANTIATE DATA LOADERS

        train_dataloader = dataloaders.get(
            name=get_param(cfg, "train_dataloader"),
            dataset_params=cfg.dataset_params.train_dataset_params,
            dataloader_params=cfg.dataset_params.train_dataloader_params,
        )

        val_dataloader = dataloaders.get(
            name=get_param(cfg, "val_dataloader"),
            dataset_params=cfg.dataset_params.val_dataset_params,
            dataloader_params=cfg.dataset_params.val_dataloader_params,
        )

        recipe_logged_cfg = {"recipe_config": OmegaConf.to_container(cfg, resolve=True)}
        # TRAIN
        res = trainer.train(
            model=model,
            train_loader=train_dataloader,
            valid_loader=val_dataloader,
            test_loaders=None,  # TODO: Add option to set test_loaders in recipe
            training_params=cfg.training_hyperparams,
            additional_configs_to_log=recipe_logged_cfg,
        )

        return model, res

    @classmethod
    def _trigger_cfg_modifying_callbacks(cls, cfg):
        pre_launch_cbs = get_param(cfg, "pre_launch_callbacks_list", list())
        pre_launch_cbs = ListFactory(PreLaunchCallbacksFactory()).get(pre_launch_cbs)
        for plcb in pre_launch_cbs:
            cfg = plcb(cfg)
        return cfg

    @classmethod
    def resume_experiment(cls, experiment_name: str, ckpt_root_dir: Optional[str] = None, run_id: Optional[str] = None) -> Tuple[nn.Module, Tuple]:
        """
        Resume a training that was run using our recipes.

        :param experiment_name:     Name of the experiment to resume
        :param ckpt_root_dir:       Directory including the checkpoints
        :param run_id:              Optional. Run id of the experiment. If None, the most recent run will be loaded.
        :return:                    The config that was used for that experiment
        """
        logger.info("Resume training using the checkpoint recipe, ignoring the current recipe")

        if run_id is None:
            run_id = get_latest_run_id(checkpoints_root_dir=ckpt_root_dir, experiment_name=experiment_name)

        # Load the latest config
        cfg = load_experiment_cfg(ckpt_root_dir=ckpt_root_dir, experiment_name=experiment_name, run_id=run_id)

        add_params_to_cfg(cfg, params=["training_hyperparams.resume=True"])
        if run_id:
            add_params_to_cfg(cfg, params=[f"training_hyperparams.run_id={run_id}"])
        return cls.train_from_config(cfg)

    @classmethod
    def evaluate_from_recipe(cls, cfg: DictConfig) -> Tuple[nn.Module, Tuple]:
        """
        Evaluate according to a cfg recipe configuration.

        Note:   This script does NOT run training, only validation.
                Please make sure that the config refers to a PRETRAINED MODEL either from one of your checkpoint or from pretrained weights from model zoo.
        :param cfg: The parsed DictConfig from yaml recipe files or a dictionary
        """

        setup_device(
            device=core_utils.get_param(cfg, "device"),
            multi_gpu=core_utils.get_param(cfg, "multi_gpu"),
            num_gpus=core_utils.get_param(cfg, "num_gpus"),
        )

        # INSTANTIATE ALL OBJECTS IN CFG
        cfg = hydra.utils.instantiate(cfg)

        trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir)

        # INSTANTIATE DATA LOADERS
        val_dataloader = dataloaders.get(
            name=cfg.val_dataloader, dataset_params=cfg.dataset_params.val_dataset_params, dataloader_params=cfg.dataset_params.val_dataloader_params
        )

        if cfg.checkpoint_params.checkpoint_path is None:
            logger.info(
                "`checkpoint_params.checkpoint_path` was not provided. The recipe will be evaluated using checkpoints_dir.training_hyperparams.ckpt_name"
            )

            eval_run_id = core_utils.get_param(cfg, "training_hyperparams.run_id", None)
            if eval_run_id is None:
                logger.info("`training_hyperparams.run_id` was not provided. Evaluating the latest run.")
                eval_run_id = get_latest_run_id(checkpoints_root_dir=cfg.ckpt_root_dir, experiment_name=cfg.experiment_name)
                # NOTE: `eval_run_id` will be None if no latest run directory was found.

            # NOTE: If eval_run_id is None here, the checkpoint directory will be ckpt_root_dir/experiment_name.
            # This ensures backward compatibility with `super-gradients<=3.1.2` which did not include one directory per run.
            checkpoints_dir = get_checkpoints_dir_path(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir, run_id=eval_run_id)
            checkpoint_path = os.path.join(checkpoints_dir, cfg.training_hyperparams.ckpt_name)
            if os.path.exists(checkpoint_path):
                cfg.checkpoint_params.checkpoint_path = checkpoint_path

        logger.info(f"Evaluating checkpoint: {cfg.checkpoint_params.checkpoint_path}")

        # BUILD NETWORK
        model = models.get(
            model_name=cfg.architecture,
            num_classes=cfg.arch_params.num_classes,
            arch_params=cfg.arch_params,
            strict_load=cfg.checkpoint_params.strict_load,
            pretrained_weights=cfg.checkpoint_params.pretrained_weights,
            checkpoint_path=cfg.checkpoint_params.checkpoint_path,
            load_backbone=cfg.checkpoint_params.load_backbone,
        )

        # TEST
        valid_metrics_dict = trainer.test(model=model, test_loader=val_dataloader, test_metrics_list=cfg.training_hyperparams.valid_metrics_list)

        results = ["Validate Results"]
        results += [f"   - {metric:10}: {value}" for metric, value in valid_metrics_dict.items()]
        logger.info("\n".join(results))

        return model, valid_metrics_dict

    @classmethod
    def evaluate_checkpoint(
        cls,
        experiment_name: str,
        ckpt_name: str = "ckpt_latest.pth",
        ckpt_root_dir: Optional[str] = None,
        run_id: Optional[str] = None,
    ) -> None:
        """
        Evaluate a checkpoint resulting from one of your previous experiment, using the same parameters (dataset, valid_metrics,...)
        as used during the training of the experiment

        Note:
            The parameters will be unchanged even if the recipe used for that experiment was changed since then.
            This is to ensure that validation of the experiment will remain exactly the same as during training.

        Example, evaluate the checkpoint "average_model.pth" from experiment "my_experiment_name":
            >> evaluate_checkpoint(experiment_name="my_experiment_name", ckpt_name="average_model.pth")

        :param experiment_name:     Name of the experiment to validate
        :param ckpt_name:           Name of the checkpoint to test ("ckpt_latest.pth", "average_model.pth" or "ckpt_best.pth" for instance)
        :param ckpt_root_dir:       Optional. Directory including the checkpoints
        :param run_id:              Optional. Run id of the experiment. If None, the most recent run will be loaded.
        :return:                    The config that was used for that experiment
        """
        logger.info("Evaluate checkpoint")

        if run_id is None:
            run_id = get_latest_run_id(checkpoints_root_dir=ckpt_root_dir, experiment_name=experiment_name)

        # Load the latest config
        cfg = load_experiment_cfg(ckpt_root_dir=ckpt_root_dir, experiment_name=experiment_name, run_id=run_id)

        add_params_to_cfg(cfg, params=["training_hyperparams.resume=True", f"ckpt_name={ckpt_name}"])
        cls.evaluate_from_recipe(cfg)

    def _net_to_device(self):
        """
        Manipulates self.net according to device.multi_gpu
        """
        self.net.to(device_config.device)

        # FOR MULTI-GPU TRAINING (not distributed)
        sync_bn = core_utils.get_param(self.training_params, "sync_bn", default_val=False)
        if device_config.multi_gpu == MultiGPUMode.DATA_PARALLEL:
            self.net = torch.nn.DataParallel(self.net, device_ids=get_device_ids())
        elif device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
            if sync_bn:
                if not self.ddp_silent_mode:
                    logger.info("DDP - Using Sync Batch Norm... Training time will be affected accordingly")
                self.net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.net)

            local_rank = int(device_config.device.split(":")[1])
            self.net = torch.nn.parallel.DistributedDataParallel(self.net, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)

    def _train_epoch(self, context: PhaseContext, silent_mode: bool = False) -> tuple:
        """
        train_epoch - A single epoch training procedure
            :param optimizer:   The optimizer for the network
            :param epoch:       The current epoch
            :param silent_mode: No verbosity
        """
        # SET THE MODEL IN training STATE
        self.net.train()

        # THE DISABLE FLAG CONTROLS WHETHER THE PROGRESS BAR IS SILENT OR PRINTS THE LOGS
        with tqdm(self.train_loader, bar_format="{l_bar}{bar:10}{r_bar}", dynamic_ncols=True, disable=silent_mode) as progress_bar_train_loader:
            progress_bar_train_loader.set_description(f"Train epoch {context.epoch}")

            # RESET/INIT THE METRIC LOGGERS
            self._reset_metrics()

            self.train_metrics.to(device_config.device)
            loss_avg_meter = core_utils.utils.AverageMeter()

            context.update_context(loss_avg_meter=loss_avg_meter, metrics_compute_fn=self.train_metrics)

            for batch_idx, batch_items in enumerate(progress_bar_train_loader):
                batch_items = core_utils.tensor_container_to_device(batch_items, device_config.device, non_blocking=True)
                inputs, targets, additional_batch_items = sg_trainer_utils.unpack_batch_items(batch_items)

                if self.pre_prediction_callback is not None:
                    inputs, targets = self.pre_prediction_callback(inputs, targets, batch_idx)

                context.update_context(
                    batch_idx=batch_idx, inputs=inputs, target=targets, additional_batch_items=additional_batch_items, **additional_batch_items
                )
                self.phase_callback_handler.on_train_batch_start(context)

                # AUTOCAST IS ENABLED ONLY IF self.training_params.mixed_precision - IF enabled=False AUTOCAST HAS NO EFFECT
                with autocast(enabled=self.training_params.mixed_precision):
                    # FORWARD PASS TO GET NETWORK'S PREDICTIONS
                    outputs = self.net(inputs)

                    # COMPUTE THE LOSS FOR BACK PROP + EXTRA METRICS COMPUTED DURING THE LOSS FORWARD PASS
                    loss, loss_log_items = self._get_losses(outputs, targets)

                context.update_context(preds=outputs, loss_log_items=loss_log_items, loss_logging_items_names=self.loss_logging_items_names)
                self.phase_callback_handler.on_train_batch_loss_end(context)

                if not self.ddp_silent_mode and batch_idx == 0:
                    self._epoch_start_logging_values = self._get_epoch_start_logging_values()

                self._backward_step(loss, context.epoch, batch_idx, context)

                # COMPUTE THE RUNNING USER METRICS AND LOSS RUNNING ITEMS. RESULT TUPLE IS THEIR CONCATENATION.
                logging_values = loss_avg_meter.average + get_metrics_results_tuple(self.train_metrics)
                gpu_memory_utilization = get_gpu_mem_utilization() / 1e9 if torch.cuda.is_available() else 0

                # RENDER METRICS PROGRESS
                pbar_message_dict = get_train_loop_description_dict(
                    logging_values, self.train_metrics, self.loss_logging_items_names, gpu_mem=gpu_memory_utilization
                )

                progress_bar_train_loader.set_postfix(**pbar_message_dict)
                self.phase_callback_handler.on_train_batch_end(context)

                if self.max_train_batches is not None and self.max_train_batches - 1 <= batch_idx:
                    break

            self.train_monitored_values = sg_trainer_utils.update_monitored_values_dict(
                monitored_values_dict=self.train_monitored_values, new_values_dict=pbar_message_dict
            )

        return logging_values

    def _get_losses(self, outputs: torch.Tensor, targets: torch.Tensor) -> Tuple[torch.Tensor, tuple]:
        # GET THE OUTPUT OF THE LOSS FUNCTION
        loss = self.criterion(outputs, targets)
        if isinstance(loss, tuple):
            loss, loss_logging_items = loss
            # IF ITS NOT A TUPLE THE LOGGING ITEMS CONTAIN ONLY THE LOSS FOR BACKPROP (USER DEFINED LOSS RETURNS SCALAR)
        else:
            loss_logging_items = loss.unsqueeze(0).detach()

        # ON FIRST BACKWARD, DERRIVE THE LOGGING TITLES.
        if self.loss_logging_items_names is None or self._first_backward:
            self._init_loss_logging_names(loss_logging_items)
            if self.metric_to_watch:
                self._init_monitored_items()
            self._first_backward = False

        if len(loss_logging_items) != len(self.loss_logging_items_names):
            raise ValueError(
                "Loss output length must match loss_logging_items_names. Got "
                + str(len(loss_logging_items))
                + ", and "
                + str(len(self.loss_logging_items_names))
            )
        # RETURN AND THE LOSS LOGGING ITEMS COMPUTED DURING LOSS FORWARD PASS
        return loss, loss_logging_items

    def _init_monitored_items(self):
        # Instantiate the values to monitor (loss/metric)
        for loss_name in self.loss_logging_items_names:
            self.train_monitored_values[loss_name] = MonitoredValue(name=loss_name, greater_is_better=False)
            self.valid_monitored_values[loss_name] = MonitoredValue(name=loss_name, greater_is_better=False)

        for metric_name in get_metrics_titles(self.train_metrics):
            self.train_monitored_values[metric_name] = MonitoredValue(name=metric_name, greater_is_better=self.greater_train_metrics_is_better.get(metric_name))

        for metric_name in get_metrics_titles(self.valid_metrics):
            self.valid_monitored_values[metric_name] = MonitoredValue(name=metric_name, greater_is_better=self.greater_valid_metrics_is_better.get(metric_name))

        for dataset_name in self.test_loaders.keys():
            for loss_name in self.loss_logging_items_names:
                loss_full_name = f"{dataset_name}:{loss_name}" if dataset_name else loss_name
                self.test_monitored_values[loss_full_name] = MonitoredValue(
                    name=f"{dataset_name}:{loss_name}",
                    greater_is_better=False,
                )
            for metric_name in get_metrics_titles(self.test_metrics):
                metric_full_name = f"{dataset_name}:{metric_name}" if dataset_name else metric_name
                self.test_monitored_values[metric_full_name] = MonitoredValue(
                    name=metric_full_name,
                    greater_is_better=self.greater_valid_metrics_is_better.get(metric_name),
                )

        # make sure the metric_to_watch is an exact match
        metric_titles = self.loss_logging_items_names + get_metrics_titles(self.valid_metrics)
        try:
            metric_to_watch_idx = fuzzy_idx_in_list(self.metric_to_watch, metric_titles)
        except IndexError:
            raise ValueError(f"No match found for `metric_to_watch={self.metric_to_watch}`. Available metrics to monitor are: `{metric_titles}`.")

        metric_to_watch = metric_titles[metric_to_watch_idx]
        if metric_to_watch != self.metric_to_watch:
            logger.warning(
                f"No exact match found for `metric_to_watch={self.metric_to_watch}`. Available metrics to monitor are: `{metric_titles}`. \n"
                f"`metric_to_watch={metric_to_watch} will be used instead.`"
            )
            self.metric_to_watch = metric_to_watch

        if self.training_params.average_best_models:
            self.model_weight_averaging = ModelWeightAveraging(
                ckpt_dir=self.checkpoints_dir_path,
                greater_is_better=self.greater_metric_to_watch_is_better,
                metric_to_watch=self.metric_to_watch,
                load_checkpoint=self.load_checkpoint,
            )

    def _backward_step(self, loss: torch.Tensor, epoch: int, batch_idx: int, context: PhaseContext, *args, **kwargs) -> None:
        """
        Run backprop on the loss and perform a step
        :param loss: The value computed by the loss function
        :param optimizer: An object that can perform a gradient step and zeroize model gradient
        :param epoch: number of epoch the training is on
        :param batch_idx: Zero-based number of iteration inside the current epoch
        :param context: current phase context
        :return:
        """
        # SCALER IS ENABLED ONLY IF self.training_params.mixed_precision=True
        self.scaler.scale(loss).backward()
        self.phase_callback_handler.on_train_batch_backward_end(context)

        # ACCUMULATE GRADIENT FOR X BATCHES BEFORE OPTIMIZING
        local_step = batch_idx + 1
        global_step = local_step + len(self.train_loader) * epoch
        total_steps = len(self.train_loader) * self.max_epochs

        if global_step % self.batch_accumulate == 0:
            self.phase_callback_handler.on_train_batch_gradient_step_start(context)

            # APPLY GRADIENT CLIPPING IF REQUIRED
            if self.training_params.clip_grad_norm:
                self.scaler.unscale_(self.optimizer)
                torch.nn.utils.clip_grad_norm_(self.net.parameters(), self.training_params.clip_grad_norm)

            # SCALER IS ENABLED ONLY IF self.training_params.mixed_precision=True
            self.scaler.step(self.optimizer)
            self.scaler.update()

            self.optimizer.zero_grad()
            if self.ema:
                self.ema_model.update(self.net, step=global_step, total_steps=total_steps)

            # RUN PHASE CALLBACKS
            self.phase_callback_handler.on_train_batch_gradient_step_end(context)

    def _save_checkpoint(
        self,
        optimizer: torch.optim.Optimizer = None,
        epoch: int = None,
        validation_results_dict: Optional[Dict[str, float]] = None,
        context: PhaseContext = None,
    ) -> None:
        """
        Save the current state dict as latest (always), best (if metric was improved), epoch# (if determined in training
        params)
        """
        # WHEN THE validation_results_tuple IS NONE WE SIMPLY SAVE THE state_dict AS LATEST AND Return
        if validation_results_dict is None:
            self.sg_logger.add_checkpoint(tag="ckpt_latest_weights_only.pth", state_dict={"net": self.net.state_dict()}, global_step=epoch)
            return

        # COMPUTE THE CURRENT metric
        # IF idx IS A LIST - SUM ALL THE VALUES STORED IN THE LIST'S INDICES
        metric = validation_results_dict[self.metric_to_watch]

        # BUILD THE state_dict
        state = {"net": unwrap_model(self.net).state_dict(), "acc": metric, "epoch": epoch}

        if optimizer is not None:
            state["optimizer_state_dict"] = optimizer.state_dict()

        if self.scaler is not None:
            state["scaler_state_dict"] = self.scaler.state_dict()

        if self.ema:
            state["ema_net"] = unwrap_model(self.ema_model.ema).state_dict()

        processing_params = self._get_preprocessing_from_valid_loader()
        if processing_params is not None:
            state["processing_params"] = processing_params

        if self._torch_lr_scheduler is not None:
            state["torch_scheduler_state_dict"] = get_scheduler_state(self._torch_lr_scheduler)

        # SAVES CURRENT MODEL AS ckpt_latest
        self.sg_logger.add_checkpoint(tag="ckpt_latest.pth", state_dict=state, global_step=epoch)

        # SAVE MODEL AT SPECIFIC EPOCHS DETERMINED BY save_ckpt_epoch_list
        if epoch in self.training_params.save_ckpt_epoch_list:
            self.sg_logger.add_checkpoint(tag=f"ckpt_epoch_{epoch}.pth", state_dict=state, global_step=epoch)

        # OVERRIDE THE BEST CHECKPOINT AND best_metric IF metric GOT BETTER THAN THE PREVIOUS BEST
        if (metric > self.best_metric and self.greater_metric_to_watch_is_better) or (metric < self.best_metric and not self.greater_metric_to_watch_is_better):
            # STORE THE CURRENT metric AS BEST
            self.best_metric = metric
            self.sg_logger.add_checkpoint(tag=self.ckpt_best_name, state_dict=state, global_step=epoch)

            # RUN PHASE CALLBACKS
            self.phase_callback_handler.on_validation_end_best_epoch(context)

            if isinstance(metric, torch.Tensor):
                metric = metric.item()
            logger.info("Best checkpoint overriden: validation " + self.metric_to_watch + ": " + str(metric))

        if self.training_params.average_best_models:
            net_for_averaging = unwrap_model(self.ema_model.ema if self.ema else self.net)

            state["net"] = self.model_weight_averaging.get_average_model(net_for_averaging, validation_results_dict=validation_results_dict)
            self.sg_logger.add_checkpoint(tag=self.average_model_checkpoint_filename, state_dict=state, global_step=epoch)

    def _prep_net_for_train(self) -> None:
        if self.arch_params is None:
            self._init_arch_params()

        # TODO: REMOVE THE BELOW LINE (FOR BACKWARD COMPATIBILITY)
        if self.checkpoint_params is None:
            self.checkpoint_params = HpmStruct(load_checkpoint=self.training_params.resume)

        self._net_to_device()

        # SET THE FLAG FOR DIFFERENT PARAMETER GROUP OPTIMIZER UPDATE
        self.update_param_groups = hasattr(unwrap_model(self.net), "update_param_groups")

        if self.training_params.torch_compile:
            if torch_version_is_greater_or_equal(2, 0):
                logger.info("Using torch.compile feature. Compiling model. This may take a few minutes")
                self.net = torch.compile(self.net, **self.training_params.torch_compile_options)
                logger.info("Model compilation complete. Continuing training")
                if is_distributed():
                    torch.distributed.barrier()
            else:
                logger.warning(
                    "Your recipe has requested use of torch.compile. "
                    f"However torch.compile is not supported in this version of PyTorch ({torch.__version__}). "
                    "A Pytorch 2.0 or greater version is required. Ignoring torch_compile flag"
                )

    def _init_arch_params(self) -> None:
        default_arch_params = HpmStruct()
        arch_params = getattr(self.net, "arch_params", default_arch_params)
        self.arch_params = default_arch_params
        if arch_params is not None:
            self.arch_params.override(**arch_params.to_dict())

    # FIXME - we need to resolve flake8's 'function is too complex' for this function
    def train(
        self,
        model: nn.Module,
        training_params: dict = None,
        train_loader: DataLoader = None,
        valid_loader: DataLoader = None,
        test_loaders: Dict[str, DataLoader] = None,
        additional_configs_to_log: Dict = None,
    ):  # noqa: C901
        """

        train - Trains the Model

        IMPORTANT NOTE: Additional batch parameters can be added as a third item (optional) if a tuple is returned by
          the data loaders, as dictionary. The phase context will hold the additional items, under an attribute with
          the same name as the key in this dictionary. Then such items can be accessed through phase callbacks.

            :param additional_configs_to_log: Dict, dictionary containing configs that will be added to the training's
                sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.
            :param model: torch.nn.Module, model to train.

            :param train_loader: Dataloader for train set.
            :param valid_loader: Dataloader for validation.
            :param test_loaders: Dictionary of test loaders. The key will be used as the dataset name.
            :param training_params:

                - `resume` : bool (default=False)

                    Whether to continue training from ckpt with the same experiment name
                     (i.e resume from CKPT_ROOT_DIR/EXPERIMENT_NAME/CKPT_NAME)

                - `run_id` : (Optional) int (default=None)

                    ID of run to resume from the same experiment. When set, the training will be resumed from the checkpoint in the specified run id.

                - `ckpt_name` : str (default=ckpt_latest.pth)

                    The checkpoint (.pth file) filename in CKPT_ROOT_DIR/EXPERIMENT_NAME/ to use when resume=True and
                     resume_path=None

                - `resume_path`: str (default=None)

                    Explicit checkpoint path (.pth file) to use to resume training.

                - `max_epochs` : int

                    Number of epochs to run training.

                - `lr_updates` : list(int)

                    List of fixed epoch numbers to perform learning rate updates when `lr_mode='StepLRScheduler'`.

                - `lr_decay_factor` : float

                    Decay factor to apply to the learning rate at each update when `lr_mode='StepLRScheduler'`.


                -  `lr_mode` : Union[str, Mapping],

                    When str:

                    Learning rate scheduling policy, one of ['StepLRScheduler','PolyLRScheduler','CosineLRScheduler','FunctionLRScheduler'].

                    'StepLRScheduler' refers to constant updates at epoch numbers passed through `lr_updates`.
                        Each update decays the learning rate by `lr_decay_factor`.

                    'CosineLRScheduler' refers to the Cosine Anealing policy as mentioned in https://arxiv.org/abs/1608.03983.
                      The final learning rate ratio is controlled by `cosine_final_lr_ratio` training parameter.

                    'PolyLRScheduler' refers to the polynomial decrease:
                        in each epoch iteration `self.lr = self.initial_lr * pow((1.0 - (current_iter / max_iter)), 0.9)`

                    'FunctionLRScheduler' refers to a user-defined learning rate scheduling function, that is passed through `lr_schedule_function`.



                    When Mapping, refers to a torch.optim.lr_scheduler._LRScheduler, following the below API:

                        lr_mode = {LR_SCHEDULER_CLASS_NAME: {**LR_SCHEDULER_KWARGS, "phase": XXX, "metric_name": XXX)

                        Where "phase" (of Phase type) controls when to call torch.optim.lr_scheduler._LRScheduler.step().

                        The "metric_name" refers to the metric to watch (See docs for "metric_to_watch" in train(...)
                         https://docs.deci.ai/super-gradients/docstring/training/sg_trainer.html) when using
                          ReduceLROnPlateau. In any other case this kwarg is ignored.

                        **LR_SCHEDULER_KWARGS are simply passed to the torch scheduler's __init__.


                        For example:
                            lr_mode = {"StepLR": {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}}
                            is equivalent to following training code:

                                from torch.optim.lr_scheduler import StepLR
                                ...
                                optimizer = ....
                                scheduler = StepLR(optimizer=optimizer, gamma=0.1, step_size=1)

                                for epoch in num_epochs:
                                    train_epoch(...)
                                    scheduler.step()
                                    ....



                - `lr_schedule_function` : Union[callable,None]

                    Learning rate scheduling function to be used when `lr_mode` is 'FunctionLRScheduler'.

                - `warmup_mode`: Union[str, Type[LRCallbackBase], None]

                    If not None, define how the learning rate will be increased during the warmup phase.
                    Currently, only 'warmup_linear_epoch' and `warmup_linear_step` modes are supported.

                - `lr_warmup_epochs` : int (default=0)

                    Number of epochs for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
                    Relevant for `warmup_mode=warmup_linear_epoch`.
                    When lr_warmup_epochs > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
                    once per epoch.

                - `lr_warmup_steps` : int (default=0)

                    Number of steps for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
                    Relevant for `warmup_mode=warmup_linear_step`.
                    When lr_warmup_steps > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
                    for a total number of steps according to formula: min(lr_warmup_steps, len(train_loader)).
                    The capping is done to avoid interference of warmup with epoch-based schedulers.

                - `cosine_final_lr_ratio` : float (default=0.01)
                    Final learning rate ratio (only relevant when `lr_mode`='CosineLRScheduler'). The cosine starts from initial_lr and reaches
                     initial_lr * cosine_final_lr_ratio in last epoch

                - `inital_lr` : float

                    Initial learning rate.

                - `loss` : Union[nn.module, str]

                    Loss function for training.
                    One of SuperGradient's built in options:

                        - CrossEntropyLoss,
                        - MSELoss,
                        - RSquaredLoss,
                        - YoLoV3DetectionLoss,
                        - ShelfNetOHEMLoss,
                        - ShelfNetSemanticEncodingLoss,
                        - SSDLoss,


                    or user defined nn.module loss function.

                    IMPORTANT: forward(...) should return a (loss, loss_items) tuple where loss is the tensor used
                    for backprop (i.e what your original loss function returns), and loss_items should be a tensor of
                    shape (n_items), of values computed during the forward pass which we desire to log over the
                    entire epoch. For example- the loss itself should always be logged. Another example is a scenario
                    where the computed loss is the sum of a few components we would like to log- these entries in
                    loss_items).

                    IMPORTANT:When dealing with external loss classes, to logg/monitor the loss_items as described
                    above by specific string name:

                    Set a "component_names" property in the loss class, whos instance is passed through train_params,
                     to be a list of strings, of length n_items who's ith element is the name of the ith entry in loss_items.
                     Then each item will be logged, rendered on tensorboard and "watched" (i.e saving model checkpoints
                     according to it) under <LOSS_CLASS.__name__>"/"<COMPONENT_NAME>. If a single item is returned rather then a
                     tuple, it would be logged under <LOSS_CLASS.__name__>. When there is no such attributed, the items
                     will be named <LOSS_CLASS.__name__>"/"Loss_"<IDX> according to the length of loss_items

                    For example:
                        class MyLoss(_Loss):
                            ...
                            def forward(self, inputs, targets):
                                ...
                                total_loss = comp1 + comp2
                                loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                                return total_loss, loss_items
                            ...
                            @property
                            def component_names(self):
                                return ["total_loss", "my_1st_component", "my_2nd_component"]

                    Trainer.train(...
                                    train_params={"loss":MyLoss(),
                                                    ...
                                                    "metric_to_watch": "MyLoss/my_1st_component"}

                        This will write to log and monitor MyLoss/total_loss, MyLoss/my_1st_component,
                         MyLoss/my_2nd_component.

                   For example:
                        class MyLoss2(_Loss):
                            ...
                            def forward(self, inputs, targets):
                                ...
                                total_loss = comp1 + comp2
                                loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                                return total_loss, loss_items
                            ...

                    Trainer.train(...
                                    train_params={"loss":MyLoss(),
                                                    ...
                                                    "metric_to_watch": "MyLoss2/loss_0"}

                        This will write to log and monitor MyLoss2/loss_0, MyLoss2/loss_1, MyLoss2/loss_2
                        as they have been named by their positional index in loss_items.

                    Since running logs will save the loss_items in some internal state, it is recommended that
                    loss_items are detached from their computational graph for memory efficiency.

                - `optimizer` : Union[str, torch.optim.Optimizer]

                    Optimization algorithm. One of ['Adam','SGD','RMSProp'] corresponding to the torch.optim
                    optimzers implementations, or any object that implements torch.optim.Optimizer.

                - `criterion_params` : dict

                    Loss function parameters.

                - `optimizer_params` : dict
                    When `optimizer` is one of ['Adam','SGD','RMSProp'], it will be initialized with optimizer_params.

                    (see https://pytorch.org/docs/stable/optim.html for the full list of
                    parameters for each optimizer).

                - `train_metrics_list` : list(torchmetrics.Metric)

                    Metrics to log during training. For more information on torchmetrics see
                    https://torchmetrics.rtfd.io/en/latest/.


                - `valid_metrics_list` : list(torchmetrics.Metric)

                    Metrics to log during validation/testing. For more information on torchmetrics see
                    https://torchmetrics.rtfd.io/en/latest/.


                - `loss_logging_items_names` : list(str)

                    The list of names/titles for the outputs returned from the loss functions forward pass (reminder-
                    the loss function should return the tuple (loss, loss_items)). These names will be used for
                    logging their values.

                - `metric_to_watch` : str (default="Accuracy")

                    will be the metric which the model checkpoint will be saved according to, and can be set to any
                    of the following:

                        a metric name (str) of one of the metric objects from the valid_metrics_list

                        a "metric_name" if some metric in valid_metrics_list has an attribute component_names which
                        is a list referring to the names of each entry in the output metric (torch tensor of size n)

                        one of "loss_logging_items_names" i.e which will correspond to an item returned during the
                        loss function's forward pass (see loss docs abov).

                    At the end of each epoch, if a new best metric_to_watch value is achieved, the models checkpoint
                    is saved in YOUR_PYTHON_PATH/checkpoints/ckpt_best.pth

                - `greater_metric_to_watch_is_better` : bool

                    When choosing a model's checkpoint to be saved, the best achieved model is the one that maximizes the
                     metric_to_watch when this parameter is set to True, and a one that minimizes it otherwise.

                - `ema` : bool (default=False)

                    Whether to use Model Exponential Moving Average (see
                    https://github.com/rwightman/pytorch-image-models ema implementation)

                - `batch_accumulate` : int (default=1)

                    Number of batches to accumulate before every backward pass.

                - `ema_params` : dict

                    Parameters for the ema model.

                - `zero_weight_decay_on_bias_and_bn` : bool (default=False)

                    Whether to apply weight decay on batch normalization parameters or not (ignored when the passed
                    optimizer has already been initialized).


                - `load_opt_params` : bool (default=True)

                    Whether to load the optimizers parameters as well when loading a model's checkpoint.

                - `run_validation_freq` : int (default=1)

                    The frequency in which validation is performed during training (i.e the validation is ran every
                     `run_validation_freq` epochs). Also applies to test set if you provided one.

                - `run_test_freq` : int (default=1)

                    The frequency in which test is performed during training (i.e the test is ran every
                     `run_test_freq` epochs). Only applies if you provided a test set.

                - `save_model` : bool (default=True)

                    Whether to save the model checkpoints.

                - `silent_mode` : bool

                    Silents the print outs.

                - `mixed_precision` : bool

                    Whether to use mixed precision or not.

                - `save_ckpt_epoch_list` : list(int) (default=[])

                    List of fixed epoch indices the user wishes to save checkpoints in.

                - `average_best_models` : bool (default=False)

                    If set, a snapshot dictionary file and the average model will be saved / updated at every epoch
                    and evaluated only when training is completed. The snapshot file will only be deleted upon
                    completing the training. The snapshot dict will be managed on cpu.

                - `precise_bn` : bool (default=False)

                    Whether to use precise_bn calculation during the training.

                - `precise_bn_batch_size` : int (default=None)

                    The effective batch size we want to calculate the batchnorm on. For example, if we are training a model
                    on 8 gpus, with a batch of 128 on each gpu, a good rule of thumb would be to give it 8192
                    (ie: effective_batch_size * num_gpus = batch_per_gpu * num_gpus * num_gpus).
                    If precise_bn_batch_size is not provided in the training_params, the latter heuristic will be taken.

                - `seed` : int (default=42)

                    Random seed to be set for torch, numpy, and random. When using DDP each process will have it's seed
                    set to seed + rank.


                - `log_installed_packages` : bool (default=False)

                    When set, the list of all installed packages (and their versions) will be written to the tensorboard
                     and logfile (useful when trying to reproduce results).

                - `dataset_statistics` : bool (default=False)

                    Enable a statistic analysis of the dataset. If set to True the dataset will be analyzed and a report
                    will be added to the tensorboard along with some sample images from the dataset. Currently only
                    detection datasets are supported for analysis.

                -  `sg_logger` : Union[AbstractSGLogger, str] (defauls=base_sg_logger)

                    Define the SGLogger object for this training process. The SGLogger handles all disk writes, logs, TensorBoard, remote logging
                    and remote storage. By overriding the default base_sg_logger, you can change the storage location, support external monitoring and logging
                    or support remote storage.

                -   `sg_logger_params` : dict

                    SGLogger parameters

                -   `clip_grad_norm` : float

                    Defines a maximal L2 norm of the gradients. Values which exceed the given value will be clipped

                -   `lr_cooldown_epochs` : int (default=0)

                    Number of epochs to cooldown LR (i.e the last epoch from scheduling view point=max_epochs-cooldown).

                -   `pre_prediction_callback` : Callable (default=None)

                     When not None, this callback will be applied to images and targets, and returning them to be used
                      for the forward pass, and further computations. Args for this callable should be in the order
                      (inputs, targets, batch_idx) returning modified_inputs, modified_targets

                -   `ckpt_best_name` : str (default='ckpt_best.pth')

                    The best checkpoint (according to metric_to_watch) will be saved under this filename in the checkpoints directory.

                -   `max_train_batches`: int, for debug- when not None- will break out of inner train loop (i.e iterating over
                      train_loader) when reaching this number of batches. Usefull for debugging (default=None).

                -   `max_valid_batches`: int, for debug- when not None- will break out of inner valid loop (i.e iterating over
                      valid_loader) when reaching this number of batches. Usefull for debugging (default=None).

                -   `resume_from_remote_sg_logger`: bool (default=False),  bool (default=False), When true, ckpt_name (checkpoint filename
                       to resume i.e ckpt_latest.pth bydefault) will be downloaded into the experiment checkpoints directory
                       prior to loading weights, then training is resumed from that checkpoint. The source is unique to
                       every logger, and currently supported for WandB loggers only.

                       IMPORTANT: Only works for experiments that were ran with sg_logger_params.save_checkpoints_remote=True.
                       IMPORTANT: For WandB loggers, one must also pass the run id through the wandb_id arg in sg_logger_params.



        :return:
        """

        global logger
        if training_params is None:
            training_params = dict()

        self.train_loader = train_loader if train_loader is not None else self.train_loader
        self.valid_loader = valid_loader if valid_loader is not None else self.valid_loader
        self.test_loaders = test_loaders if test_loaders is not None else {}

        if self.train_loader is None:
            raise ValueError("No `train_loader` found. Please provide a value for `train_loader`")

        if self.valid_loader is None:
            raise ValueError("No `valid_loader` found. Please provide a value for `valid_loader`")

        if self.test_loaders is not None and not isinstance(self.test_loaders, dict):
            raise ValueError("`test_loaders` must be a dictionary mapping dataset names to DataLoaders")

        if hasattr(self.train_loader, "batch_sampler") and self.train_loader.batch_sampler is not None:
            batch_size = self.train_loader.batch_sampler.batch_size
        else:
            batch_size = self.train_loader.batch_size

        if len(self.train_loader.dataset) % batch_size != 0 and not self.train_loader.drop_last:
            logger.warning("Train dataset size % batch_size != 0 and drop_last=False, this might result in smaller " "last batch.")

        if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
            # Note: the dataloader uses sampler of the batch_sampler when it is not None.
            train_sampler = self.train_loader.batch_sampler.sampler if self.train_loader.batch_sampler is not None else self.train_loader.sampler
            if isinstance(train_sampler, SequentialSampler):
                raise ValueError(
                    "You are using a SequentialSampler on you training dataloader, while working on DDP. "
                    "This cancels the DDP benefits since it makes each process iterate through the entire dataset"
                )
            if not isinstance(train_sampler, (DistributedSampler, RepeatAugSampler)):
                logger.warning(
                    "The training sampler you are using might not support DDP. "
                    "If it doesnt, please use one of the following sampler: DistributedSampler, RepeatAugSampler"
                )
        self.training_params = TrainingParams()
        self.training_params.override(**training_params)

        self.net = model

        self._prep_net_for_train()
        self._load_checkpoint_to_model()
        if not self.ddp_silent_mode:
            self._initialize_sg_logger_objects(additional_configs_to_log)

        # SET RANDOM SEED
        random_seed(is_ddp=device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL, device=device_config.device, seed=self.training_params.seed)

        silent_mode = self.training_params.silent_mode or self.ddp_silent_mode
        # METRICS
        self._set_train_metrics(train_metrics_list=self.training_params.train_metrics_list)
        self._set_valid_metrics(valid_metrics_list=self.training_params.valid_metrics_list)
        self.test_metrics = self.valid_metrics.clone()

        # Store the metric to follow (loss\accuracy) and initialize as the worst value
        self.metric_to_watch = self.training_params.metric_to_watch
        self.greater_metric_to_watch_is_better = self.training_params.greater_metric_to_watch_is_better

        if isinstance(self.training_params.loss, Mapping) or isinstance(self.training_params.loss, str):
            self.criterion = LossesFactory().get(self.training_params.loss)

        elif isinstance(self.training_params.loss, nn.Module):
            self.criterion = self.training_params.loss

        self.criterion.to(device_config.device)

        if self.training_params.torch_compile_loss:
            if torch_version_is_greater_or_equal(2, 0):
                logger.info("Using torch.compile feature. Compiling loss. This may take a few minutes")
                self.criterion = torch.compile(self.criterion, **self.training_params.torch_compile_options)
                logger.info("Loss compilation complete. Continuing training")
                if is_distributed():
                    torch.distributed.barrier()
            else:
                logger.warning(
                    "Your recipe has requested use of torch.compile. "
                    f"However torch.compile is not supported in this version of PyTorch ({torch.__version__}). "
                    "A Pytorch 2.0 or greater version is required. Ignoring torch_compile flag"
                )

        self.max_epochs = self.training_params.max_epochs

        self.ema = self.training_params.ema

        self.precise_bn = self.training_params.precise_bn
        self.precise_bn_batch_size = self.training_params.precise_bn_batch_size

        self.batch_accumulate = self.training_params.batch_accumulate
        num_batches = len(self.train_loader)

        if self.ema:
            self.ema_model = self._instantiate_ema_model(self.training_params.ema_params)
            self.ema_model.updates = self.start_epoch * num_batches // self.batch_accumulate
            if self.load_checkpoint:
                if "ema_net" in self.checkpoint.keys():
                    self.ema_model.ema.load_state_dict(self.checkpoint["ema_net"])
                else:
                    self.ema = False
                    logger.warning("[Warning] Checkpoint does not include EMA weights, continuing training without EMA.")

        self.run_validation_freq = self.training_params.run_validation_freq
        self.run_test_freq = self.training_params.run_test_freq

        inf_time = 0
        timer = core_utils.Timer(device_config.device)

        # IF THE LR MODE IS NOT DEFAULT TAKE IT FROM THE TRAINING PARAMS
        self.lr_mode = self.training_params.lr_mode
        load_opt_params = self.training_params.load_opt_params

        self.phase_callbacks = self.training_params.phase_callbacks or []
        self.phase_callbacks = ListFactory(CallbacksFactory()).get(self.phase_callbacks)

        warmup_mode = self.training_params.warmup_mode
        warmup_callback_cls = None
        if isinstance(warmup_mode, str):
            from super_gradients.common.registry.registry import warn_if_deprecated

            warn_if_deprecated(warmup_mode, LR_WARMUP_CLS_DICT)

            warmup_callback_cls = LR_WARMUP_CLS_DICT[warmup_mode]
        elif isinstance(warmup_mode, type) and issubclass(warmup_mode, LRCallbackBase):
            warmup_callback_cls = warmup_mode
        elif warmup_mode is not None:
            pass
        else:
            raise RuntimeError("warmup_mode has to be either a name of a mode (str) or a subclass of PhaseCallback")

        if warmup_callback_cls is not None:
            self.phase_callbacks.append(
                warmup_callback_cls(
                    train_loader_len=len(self.train_loader),
                    net=self.net,
                    training_params=self.training_params,
                    update_param_groups=self.update_param_groups,
                    **self.training_params.to_dict(),
                )
            )

        self._add_metrics_update_callback(Phase.TRAIN_BATCH_END)
        self._add_metrics_update_callback(Phase.VALIDATION_BATCH_END)
        self._add_metrics_update_callback(Phase.TEST_BATCH_END)

        self.phase_callback_handler = CallbackHandler(callbacks=self.phase_callbacks)

        if not self.ddp_silent_mode:
            if self.training_params.dataset_statistics:
                dataset_statistics_logger = DatasetStatisticsTensorboardLogger(self.sg_logger)
                dataset_statistics_logger.analyze(
                    self.train_loader, all_classes=self.classes, title="Train-set", anchors=unwrap_model(self.net).arch_params.anchors
                )
                dataset_statistics_logger.analyze(self.valid_loader, all_classes=self.classes, title="val-set")

        sg_trainer_utils.log_uncaught_exceptions(logger)

        if not self.load_checkpoint or self.load_weights_only:
            # WHEN STARTING TRAINING FROM SCRATCH, DO NOT LOAD OPTIMIZER PARAMS (EVEN IF LOADING BACKBONE)
            self.start_epoch = 0
            self._reset_best_metric()
            load_opt_params = False

        if isinstance(self.training_params.optimizer, str) or (
            inspect.isclass(self.training_params.optimizer) and issubclass(self.training_params.optimizer, torch.optim.Optimizer)
        ):
            self.optimizer = build_optimizer(net=unwrap_model(self.net), lr=self.training_params.initial_lr, training_params=self.training_params)
        elif isinstance(self.training_params.optimizer, torch.optim.Optimizer):
            self.optimizer = self.training_params.optimizer
        else:
            raise UnsupportedOptimizerFormat()

        if self.lr_mode is not None:
            lr_scheduler_callback = create_lr_scheduler_callback(
                lr_mode=self.lr_mode,
                train_loader=self.train_loader,
                net=self.net,
                training_params=self.training_params,
                update_param_groups=self.update_param_groups,
                optimizer=self.optimizer,
            )
            self.phase_callbacks.append(lr_scheduler_callback)

            # NEED ACCESS TO THE UNDERLYING TORCH SCHEDULER FOR LOADING/SAVING IT'S STATE_DICT
            if isinstance(lr_scheduler_callback, LRSchedulerCallback):
                self._torch_lr_scheduler = lr_scheduler_callback.scheduler
                if self.load_checkpoint:
                    self._torch_lr_scheduler.load_state_dict(self.checkpoint["torch_scheduler_state_dict"])

        # VERIFY GRADIENT CLIPPING VALUE
        if self.training_params.clip_grad_norm is not None and self.training_params.clip_grad_norm <= 0:
            raise TypeError("Params", "Invalid clip_grad_norm")

        if self.load_checkpoint and load_opt_params:
            self.optimizer.load_state_dict(self.checkpoint["optimizer_state_dict"])

        self.pre_prediction_callback = CallbacksFactory().get(self.training_params.pre_prediction_callback)

        self._initialize_mixed_precision(self.training_params.mixed_precision)

        self.ckpt_best_name = self.training_params.ckpt_best_name

        if self.training_params.max_train_batches is not None:
            if self.training_params.max_train_batches > len(self.train_loader):
                logger.warning("max_train_batches is greater than len(self.train_loader) and will have no effect.")
            elif self.training_params.max_train_batches <= 0:
                raise ValueError("max_train_batches must be positive.")

        if self.training_params.max_valid_batches is not None:
            if self.training_params.max_valid_batches > len(self.valid_loader):
                logger.warning("max_valid_batches is greater than len(self.valid_loader) and will have no effect.")
            elif self.training_params.max_valid_batches <= 0:
                raise ValueError("max_valid_batches must be positive.")

        self.max_train_batches = self.training_params.max_train_batches
        self.max_valid_batches = self.training_params.max_valid_batches

        # STATE ATTRIBUTE SET HERE FOR SUBSEQUENT TRAIN() CALLS
        self._first_backward = True

        context = PhaseContext(
            optimizer=self.optimizer,
            net=self.net,
            experiment_name=self.experiment_name,
            ckpt_dir=self.checkpoints_dir_path,
            criterion=self.criterion,
            lr_warmup_epochs=self.training_params.lr_warmup_epochs,
            sg_logger=self.sg_logger,
            train_loader=self.train_loader,
            valid_loader=self.valid_loader,
            training_params=self.training_params,
            ddp_silent_mode=self.ddp_silent_mode,
            checkpoint_params=self.checkpoint_params,
            architecture=self.architecture,
            arch_params=self.arch_params,
            metric_to_watch=self.metric_to_watch,
            device=device_config.device,
            ema_model=self.ema_model,
            valid_metrics=self.valid_metrics,
        )
        self.phase_callback_handler.on_training_start(context)

        # Check if the model supports sliding window inference.
        model = unwrap_model(context.net)
        if (
            context.training_params.phase_callbacks is not None
            and "SlidingWindowValidationCallback" in context.training_params.phase_callbacks
            and (not hasattr(model, "enable_sliding_window_validation") or not hasattr(model, "disable_sliding_window_validation"))
        ):
            raise ValueError(
                "You can use sliding window validation callback, but your model does not support sliding window "
                "inference. Please either remove the callback or use the model that supports sliding inference: "
                "Segformer"
            )

        first_batch = next(iter(self.train_loader))
        inputs, _, _ = sg_trainer_utils.unpack_batch_items(first_batch)

        log_main_training_params(
            multi_gpu=device_config.multi_gpu,
            num_gpus=get_world_size(),
            batch_size=len(inputs),
            batch_accumulate=self.batch_accumulate,
            train_dataset_length=len(self.train_loader.dataset),
            train_dataloader_len=len(self.train_loader),
        )

        processing_params = self._get_preprocessing_from_valid_loader()
        if processing_params is not None:
            unwrap_model(self.net).set_dataset_processing_params(**processing_params)

        try:
            # HEADERS OF THE TRAINING PROGRESS
            if not silent_mode:
                logger.info(f"Started training for {self.max_epochs - self.start_epoch} epochs ({self.start_epoch}/" f"{self.max_epochs - 1})\n")
            for epoch in range(self.start_epoch, self.max_epochs):
                # broadcast_from_master is necessary here, since in DDP mode, only the master node will
                # receive the Ctrl-C signal, and we want all nodes to stop training.
                if broadcast_from_master(context.stop_training):
                    logger.info("Request to stop training has been received, stopping training")
                    break

                # Phase.TRAIN_EPOCH_START
                # RUN PHASE CALLBACKS
                context.update_context(epoch=epoch)
                self.phase_callback_handler.on_train_loader_start(context)

                # IN DDP- SET_EPOCH WILL CAUSE EVERY PROCESS TO BE EXPOSED TO THE ENTIRE DATASET BY SHUFFLING WITH A
                # DIFFERENT SEED EACH EPOCH START
                if (
                    device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL
                    and hasattr(self.train_loader, "sampler")
                    and hasattr(self.train_loader.sampler, "set_epoch")
                ):
                    self.train_loader.sampler.set_epoch(epoch)

                train_metrics_tuple = self._train_epoch(context=context, silent_mode=silent_mode)

                # Phase.TRAIN_EPOCH_END
                # RUN PHASE CALLBACKS
                train_metrics_dict = get_metrics_dict(train_metrics_tuple, self.train_metrics, self.loss_logging_items_names)

                context.update_context(metrics_dict=train_metrics_dict)
                self.phase_callback_handler.on_train_loader_end(context)

                # CALCULATE PRECISE BATCHNORM STATS
                if self.precise_bn:
                    compute_precise_bn_stats(
                        model=self.net, loader=self.train_loader, precise_bn_batch_size=self.precise_bn_batch_size, num_gpus=get_world_size()
                    )
                    if self.ema:
                        compute_precise_bn_stats(
                            model=self.ema_model.ema,
                            loader=self.train_loader,
                            precise_bn_batch_size=self.precise_bn_batch_size,
                            num_gpus=get_world_size(),
                        )

                # model switch - we replace self.net with the ema model for the testing and saving part
                # and then switch it back before the next training epoch
                if self.ema:
                    self.ema_model.update_attr(self.net)
                    keep_model = self.net
                    self.net = self.ema_model.ema

                # RUN TEST ON VALIDATION SET EVERY self.run_validation_freq EPOCHS
                valid_metrics_dict = {}
                if (epoch + 1) % self.run_validation_freq == 0:
                    self.phase_callback_handler.on_validation_loader_start(context)
                    timer.start()
                    valid_metrics_dict = self._validate_epoch(context=context, silent_mode=silent_mode)
                    inf_time = timer.stop()

                    self.valid_monitored_values = sg_trainer_utils.update_monitored_values_dict(
                        monitored_values_dict=self.valid_monitored_values,
                        new_values_dict=valid_metrics_dict,
                    )  # TODO: Move this logic inside a MonitoredValues class
                    # Phase.VALIDATION_EPOCH_END
                    # RUN PHASE CALLBACKS
                    context.update_context(metrics_dict=valid_metrics_dict)
                    self.phase_callback_handler.on_validation_loader_end(context)

                test_metrics_dict = {}
                if (epoch + 1) % self.run_test_freq == 0:
                    self.phase_callback_handler.on_test_loader_start(context)
                    for dataset_name, dataloader in self.test_loaders.items():
                        dataset_metrics_dict = self._test_epoch(data_loader=dataloader, context=context, silent_mode=silent_mode, dataset_name=dataset_name)
                        dataset_metrics_dict_with_name = {
                            f"{dataset_name}:{metric_name}": metric_value for metric_name, metric_value in dataset_metrics_dict.items()
                        }
                        self.test_monitored_values = sg_trainer_utils.update_monitored_values_dict(
                            monitored_values_dict=self.test_monitored_values,
                            new_values_dict=dataset_metrics_dict_with_name,
                        )  # TODO: Move this logic inside a MonitoredValues class

                        test_metrics_dict.update(**dataset_metrics_dict_with_name)
                    context.update_context(metrics_dict=test_metrics_dict)
                    self.phase_callback_handler.on_test_loader_end(context)

                if self.ema:
                    self.net = keep_model

                if not self.ddp_silent_mode:
                    # SAVING AND LOGGING OCCURS ONLY IN THE MAIN PROCESS (IN CASES THERE ARE SEVERAL PROCESSES - DDP)
                    self._write_to_disk_operations(
                        train_metrics_dict=train_metrics_dict,
                        validation_results_dict=valid_metrics_dict,
                        test_metrics_dict=test_metrics_dict,
                        lr_dict=self._epoch_start_logging_values,
                        inf_time=inf_time,
                        epoch=epoch,
                        context=context,
                    )
                    self.sg_logger.upload()

                if not silent_mode:
                    sg_trainer_utils.display_epoch_summary(
                        epoch=context.epoch,
                        n_digits=4,
                        monitored_values_dict={
                            "Train": self.train_monitored_values,
                            "Validation": self.valid_monitored_values,
                            "Test": self.test_monitored_values,
                        },
                    )

            # PHASE.AVERAGE_BEST_MODELS_VALIDATION_START
            self.phase_callback_handler.on_average_best_models_validation_start(context)

            # Evaluating the average model and removing snapshot averaging file if training is completed
            if self.training_params.average_best_models:
                self._validate_final_average_model(context=context, checkpoint_dir_path=self.checkpoints_dir_path, cleanup_snapshots_pkl_file=True)

            # PHASE.AVERAGE_BEST_MODELS_VALIDATION_END
            self.phase_callback_handler.on_average_best_models_validation_end(context)

        except KeyboardInterrupt:
            context.update_context(stop_training=True)
            logger.info(
                "\n[MODEL TRAINING EXECUTION HAS BEEN INTERRUPTED]... Please wait until SOFT-TERMINATION process "
                "finishes and saves all of the Model Checkpoints and log files before terminating..."
            )
            logger.info("For HARD Termination - Stop the process again")

        finally:
            if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
                # CLEAN UP THE MULTI-GPU PROCESS GROUP WHEN DONE
                if torch.distributed.is_initialized() and self.training_params.kill_ddp_pgroup_on_end:
                    torch.distributed.destroy_process_group()

            # PHASE.TRAIN_END
            self.phase_callback_handler.on_training_end(context)

            if not self.ddp_silent_mode:
                self.sg_logger.close()

    def _get_preprocessing_from_valid_loader(self) -> Optional[dict]:
        valid_loader = self.valid_loader

        if isinstance(unwrap_model(self.net), HasPredict) and isinstance(valid_loader.dataset, HasPreprocessingParams):
            try:
                return valid_loader.dataset.get_dataset_preprocessing_params()
            except Exception as e:
                logger.warning(
                    f"Could not set preprocessing pipeline from the validation dataset:\n {e}.\n Before calling"
                    "predict make sure to call set_dataset_processing_params."
                )

    def _reset_best_metric(self):
        self.best_metric = -1 * np.inf if self.greater_metric_to_watch_is_better else np.inf

    def _reset_metrics(self):
        for metric in ("train_metrics", "valid_metrics", "test_metrics"):
            if hasattr(self, metric) and getattr(self, metric) is not None:
                getattr(self, metric).reset()

    @resolve_param("train_metrics_list", ListFactory(MetricsFactory()))
    def _set_train_metrics(self, train_metrics_list):
        self.train_metrics = MetricCollection(train_metrics_list)

        for metric_name, metric in self.train_metrics.items():
            if hasattr(metric, "greater_component_is_better"):
                self.greater_train_metrics_is_better.update(metric.greater_component_is_better)
            elif hasattr(metric, "greater_is_better"):
                self.greater_train_metrics_is_better[metric_name] = metric.greater_is_better
            else:
                self.greater_train_metrics_is_better[metric_name] = None

    @resolve_param("valid_metrics_list", ListFactory(MetricsFactory()))
    def _set_valid_metrics(self, valid_metrics_list):
        self.valid_metrics = MetricCollection(valid_metrics_list)

        for metric_name, metric in self.valid_metrics.items():
            if hasattr(metric, "greater_component_is_better"):
                self.greater_valid_metrics_is_better.update(metric.greater_component_is_better)
            elif hasattr(metric, "greater_is_better"):
                self.greater_valid_metrics_is_better[metric_name] = metric.greater_is_better
            else:
                self.greater_valid_metrics_is_better[metric_name] = None

    @resolve_param("test_metrics_list", ListFactory(MetricsFactory()))
    def _set_test_metrics(self, test_metrics_list):
        self.test_metrics = MetricCollection(test_metrics_list)

    def _initialize_mixed_precision(self, mixed_precision_enabled: bool):
        # SCALER IS ALWAYS INITIALIZED BUT IS DISABLED IF MIXED PRECISION WAS NOT SET
        self.scaler = GradScaler(enabled=mixed_precision_enabled)

        if mixed_precision_enabled:
            assert device_config.device.startswith("cuda"), "mixed precision is not available for CPU"
            if device_config.multi_gpu == MultiGPUMode.DATA_PARALLEL:
                # IN DATAPARALLEL MODE WE NEED TO WRAP THE FORWARD FUNCTION OF OUR MODEL SO IT WILL RUN WITH AUTOCAST.
                # BUT SINCE THE MODULE IS CLONED TO THE DEVICES ON EACH FORWARD CALL OF A DATAPARALLEL MODEL,
                # WE HAVE TO REGISTER THE WRAPPER BEFORE EVERY FORWARD CALL
                def hook(module, _):
                    module.forward = MultiGPUModeAutocastWrapper(module.forward)

                unwrap_model(self.net).register_forward_pre_hook(hook=hook)

            if self.load_checkpoint:
                scaler_state_dict = core_utils.get_param(self.checkpoint, "scaler_state_dict")
                if scaler_state_dict is None:
                    logger.warning("Mixed Precision - scaler state_dict not found in loaded model. This may case issues " "with loss scaling")
                else:
                    self.scaler.load_state_dict(scaler_state_dict)

    def _validate_final_average_model(self, context: PhaseContext, checkpoint_dir_path: str, cleanup_snapshots_pkl_file=False):
        """
        Testing the averaged model by loading the last saved average checkpoint and running test.
        Will be loaded to each of DDP processes
        :param cleanup_pkl_file: a flag for deleting the 10 best snapshots dictionary
        """
        logger.info("RUNNING ADDITIONAL TEST ON THE AVERAGED MODEL...")

        keep_state_dict = deepcopy(self.net.state_dict())
        # SETTING STATE DICT TO THE AVERAGE MODEL FOR EVALUATION
        average_model_ckpt_path = os.path.join(checkpoint_dir_path, self.average_model_checkpoint_filename)
        local_rank = get_local_rank()

        # WAIT FOR MASTER RANK TO SAVE THE CKPT BEFORE WE TRY TO READ IT.
        with wait_for_the_master(local_rank):
            average_model_sd = read_ckpt_state_dict(average_model_ckpt_path)["net"]

        unwrap_model(self.net).load_state_dict(average_model_sd)
        # testing the averaged model and save instead of best model if needed
        context.update_context(epoch=self.max_epochs)
        averaged_model_results_dict = self._validate_epoch(context=context)
        self.valid_monitored_values = sg_trainer_utils.update_monitored_values_dict(
            monitored_values_dict=self.valid_monitored_values,
            new_values_dict=averaged_model_results_dict,
        )  # TODO: Move this logic inside a MonitoredValues class

        # Reverting the current model
        self.net.load_state_dict(keep_state_dict)

        if not self.ddp_silent_mode:
            write_struct = ""
            for name, value in averaged_model_results_dict.items():
                write_struct += "%s: %.3f  \n  " % (name, value)
                self.sg_logger.add_scalar(name, value, global_step=self.max_epochs)

            self.sg_logger.add_text("Averaged_Model_Performance", write_struct, self.max_epochs)
            if cleanup_snapshots_pkl_file:
                self.model_weight_averaging.cleanup()

    @property
    def get_arch_params(self):
        return self.arch_params.to_dict()

    @property
    def get_structure(self):
        return unwrap_model(self.net).structure

    @property
    def get_architecture(self):
        return self.architecture

    def set_experiment_name(self, experiment_name):
        self.experiment_name = experiment_name

    def _re_build_model(self, arch_params={}):
        """
        arch_params : dict
            Architecture H.P. e.g.: block, num_blocks, num_classes, etc.
        :return:
        """
        if "num_classes" not in arch_params.keys():
            if self.dataset_interface is None:
                raise Exception("Error", "Number of classes not defined in arch params and dataset is not defined")
            else:
                arch_params["num_classes"] = len(self.classes)

        self.arch_params = core_utils.HpmStruct(**arch_params)
        self.classes = self.arch_params.num_classes
        self.net = self._instantiate_net(self.architecture, self.arch_params, self.checkpoint_params)
        # save the architecture for neural architecture search
        if hasattr(self.net, "structure"):
            self.architecture = self.net.structure

        self.net.to(device_config.device)

        if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
            logger.warning("Warning: distributed training is not supported in re_build_model()")
        if device_config.multi_gpu == MultiGPUMode.DATA_PARALLEL:
            self.net = torch.nn.DataParallel(self.net, device_ids=get_device_ids())

    @property
    def get_module(self):
        return self.net

    def set_module(self, module):
        self.net = module

    def _switch_device(self, new_device):
        device_config.device = new_device
        self.net.to(device_config.device)

    # FIXME - we need to resolve flake8's 'function is too complex' for this function
    def _load_checkpoint_to_model(self):

        self.checkpoint = {}
        strict_load = core_utils.get_param(self.training_params, "resume_strict_load", StrictLoad.ON)
        ckpt_name = core_utils.get_param(self.training_params, "ckpt_name", "ckpt_latest.pth")

        resume = core_utils.get_param(self.training_params, "resume", False)
        run_id = core_utils.get_param(self.training_params, "run_id", None)
        resume_path = core_utils.get_param(self.training_params, "resume_path")
        resume_from_remote_sg_logger = core_utils.get_param(self.training_params, "resume_from_remote_sg_logger", False)
        self.load_checkpoint = resume or (run_id is not None) or (resume_path is not None) or resume_from_remote_sg_logger

        if run_id is None:  # User did not specify a `run_id`
            if resume and not (resume_from_remote_sg_logger or resume_path):
                # If `resume_from_remote_sg_logger` or `resume_path` is used, we want to create a new run_id.
                run_id = get_latest_run_id(checkpoints_root_dir=self.ckpt_root_dir, experiment_name=self.experiment_name)
                logger.info("Resuming training from latest run.")
            else:
                run_id = generate_run_id()
                logger.info(f"Starting a new run with `run_id={run_id}`")
        else:
            validate_run_id(ckpt_root_dir=self.ckpt_root_dir, experiment_name=self.experiment_name, run_id=run_id)
            logger.info(f"Resuming training from `run_id={run_id}`")

        self.checkpoints_dir_path = get_checkpoints_dir_path(ckpt_root_dir=self.ckpt_root_dir, experiment_name=self.experiment_name, run_id=run_id)
        logger.info(f"Checkpoints directory: {self.checkpoints_dir_path}")

        with wait_for_the_master(get_local_rank()):
            if resume_from_remote_sg_logger and not self.ddp_silent_mode:
                self.sg_logger.download_remote_ckpt(ckpt_name=ckpt_name)

        if self.load_checkpoint or resume_path:
            checkpoint_path = resume_path if resume_path else os.path.join(self.checkpoints_dir_path, ckpt_name)

            # LOAD CHECKPOINT TO MODEL
            self.checkpoint = load_checkpoint_to_model(
                ckpt_local_path=checkpoint_path,
                load_backbone=self.load_backbone,
                net=self.net,
                strict=strict_load.value if isinstance(strict_load, StrictLoad) else strict_load,
                load_weights_only=self.load_weights_only,
                load_ema_as_net=False,
            )

            if "ema_net" in self.checkpoint.keys():
                logger.warning(
                    "[WARNING] Main network has been loaded from checkpoint but EMA network exists as "
                    "well. It "
                    " will only be loaded during validation when training with ema=True. "
                )

        # UPDATE TRAINING PARAMS IF THEY EXIST & WE ARE NOT LOADING AN EXTERNAL MODEL's WEIGHTS
        self.best_metric = self.checkpoint["acc"] if "acc" in self.checkpoint.keys() else -1
        self.start_epoch = self.checkpoint["epoch"] if "epoch" in self.checkpoint.keys() else 0

    def _prep_for_test(
        self, test_loader: torch.utils.data.DataLoader = None, loss=None, test_metrics_list=None, loss_logging_items_names=None, test_phase_callbacks=None
    ):
        """Run commands that are common to all models"""
        # SET THE MODEL IN evaluation STATE
        self.net.eval()

        # IF SPECIFIED IN THE FUNCTION CALL - OVERRIDE THE self ARGUMENTS
        self.test_loader = test_loader or self.test_loader
        self.criterion = loss or self.criterion
        self.loss_logging_items_names = loss_logging_items_names or self.loss_logging_items_names
        self.phase_callbacks = test_phase_callbacks or self.phase_callbacks

        if self.phase_callbacks is None:
            self.phase_callbacks = []

        if test_metrics_list:
            self._set_test_metrics(test_metrics_list)
            self._add_metrics_update_callback(Phase.TEST_BATCH_END)
            self.phase_callback_handler = CallbackHandler(self.phase_callbacks)

        # WHEN TESTING WITHOUT A LOSS FUNCTION- CREATE EPOCH HEADERS FOR PRINTS
        if self.criterion is None:
            self.loss_logging_items_names = []

        if self.test_metrics is None:
            raise ValueError(
                "Metrics are required to perform test. Pass them through test_metrics_list arg when "
                "calling test or through training_params when calling train(...)"
            )
        if test_loader is None:
            raise ValueError("Test dataloader is required to perform test. Make sure to either pass it through " "test_loader arg.")

        # RESET METRIC RUNNERS
        self._reset_metrics()
        self.test_metrics.to(device_config.device)

        if self.arch_params is None:
            self._init_arch_params()
        self._net_to_device()

    def _add_metrics_update_callback(self, phase: Phase):
        """
        Adds MetricsUpdateCallback to be fired at phase

        :param phase: Phase for the metrics callback to be fired at
        """
        self.phase_callbacks.append(MetricsUpdateCallback(phase))

    def _initialize_sg_logger_objects(self, additional_configs_to_log: Dict = None):
        """Initialize object that collect, write to disk, monitor and store remotely all training outputs"""
        sg_logger = core_utils.get_param(self.training_params, "sg_logger")

        # OVERRIDE SOME PARAMETERS TO MAKE SURE THEY MATCH THE TRAINING PARAMETERS
        general_sg_logger_params = {
            "experiment_name": self.experiment_name,
            "storage_location": "local",
            "resumed": self.load_checkpoint,
            "training_params": self.training_params,
            "checkpoints_dir_path": self.checkpoints_dir_path,
        }

        if sg_logger is None:
            raise RuntimeError("sg_logger must be defined in training params (see default_training_params)")

        if isinstance(sg_logger, AbstractSGLogger):
            self.sg_logger = sg_logger
        elif isinstance(sg_logger, str):

            sg_logger_cls = SG_LOGGERS.get(sg_logger)
            if sg_logger_cls is None:
                raise RuntimeError(f"sg_logger={sg_logger} not registered in SuperGradients. Available {list(SG_LOGGERS.keys())}")

            sg_logger_params = core_utils.get_param(self.training_params, "sg_logger_params", {})
            if issubclass(sg_logger_cls, BaseSGLogger):
                sg_logger_params = {**sg_logger_params, **general_sg_logger_params}

            # Some sg_logger require model_name, but not all of them.
            if "model_name" in get_callable_param_names(sg_logger_cls.__init__):
                if sg_logger_params.get("model_name") is None:
                    # Use the model name used in `models.get(...)` if relevant
                    sg_logger_params["model_name"] = get_model_name(unwrap_model(self.net))

                if sg_logger_params["model_name"] is None:
                    raise ValueError(
                        f'`model_name` is required to use `training_hyperparams.sg_logger="{sg_logger}"`.\n'
                        'Please set `training_hyperparams.sg_logger_params.model_name="<your-model-name>"`.\n'
                        "Note that specifying `model_name` is not required when the model was loaded using `models.get(...)`."
                    )

            self.sg_logger = sg_logger_cls(**sg_logger_params)
        else:
            raise RuntimeError("sg_logger can be either an sg_logger name (str) or an instance of AbstractSGLogger")

        if not isinstance(self.sg_logger, BaseSGLogger):
            logger.warning(
                "WARNING! Using a user-defined sg_logger: files will not be automatically written to disk!\n"
                "Please make sure the provided sg_logger writes to disk or compose your sg_logger to BaseSGLogger"
            )

        hyper_param_config = self._get_hyper_param_config()
        if additional_configs_to_log is not None:
            hyper_param_config["additional_configs_to_log"] = additional_configs_to_log
        self.sg_logger.add_config("hyper_params", hyper_param_config)
        self.sg_logger.flush()

    def _get_hyper_param_config(self):
        """
        Creates a training hyper param config for logging.
        """
        additional_log_items = {
            "initial_LR": self.training_params.initial_lr,
            "num_devices": get_world_size(),
            "multi_gpu": str(device_config.multi_gpu),
            "device_type": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "cpu",
        }
        # ADD INSTALLED PACKAGE LIST + THEIR VERSIONS
        if self.training_params.log_installed_packages:
            additional_log_items["installed_packages"] = get_installed_packages()

        dataset_params = {
            "train_dataset_params": self.train_loader.dataset.dataset_params if hasattr(self.train_loader.dataset, "dataset_params") else None,
            "train_dataloader_params": self.train_loader.dataloader_params if hasattr(self.train_loader, "dataloader_params") else None,
            "valid_dataset_params": self.valid_loader.dataset.dataset_params if hasattr(self.valid_loader.dataset, "dataset_params") else None,
            "valid_dataloader_params": self.valid_loader.dataloader_params if hasattr(self.valid_loader, "dataloader_params") else None,
        }
        hyper_param_config = {
            "checkpoint_params": self.checkpoint_params.__dict__,
            "training_hyperparams": self.training_params.__dict__,
            "dataset_params": dataset_params,
            "additional_log_items": additional_log_items,
        }
        return hyper_param_config

    def _write_to_disk_operations(
        self,
        train_metrics_dict: dict,
        validation_results_dict: dict,
        test_metrics_dict: dict,
        lr_dict: dict,
        inf_time: float,
        epoch: int,
        context: PhaseContext,
    ):
        """Run the various logging operations, e.g.: log file, Tensorboard, save checkpoint etc."""
        result_dict = {
            "Inference Time": inf_time,
            **{f"Train_{k}": v for k, v in train_metrics_dict.items()},
            **{f"Valid_{k}": v for k, v in validation_results_dict.items()},
            **{f"Test_{k}": v for k, v in test_metrics_dict.items()},
        }
        self.sg_logger.add_scalars(tag_scalar_dict=result_dict, global_step=epoch)
        self.sg_logger.add_scalars(tag_scalar_dict=lr_dict, global_step=epoch)

        # SAVE THE CHECKPOINT
        if self.training_params.save_model:
            self._save_checkpoint(self.optimizer, epoch + 1, validation_results_dict, context)

    def _get_epoch_start_logging_values(self) -> dict:
        """Get all the values that should be logged at the start of each epoch.
        This is useful for values like Learning Rate that can change over an epoch."""
        lrs = [self.optimizer.param_groups[i]["lr"] for i in range(len(self.optimizer.param_groups))]
        lr_titles = ["LR/Param_group_" + str(i) for i in range(len(self.optimizer.param_groups))] if len(self.optimizer.param_groups) > 1 else ["LR"]
        lr_dict = {lr_titles[i]: lrs[i] for i in range(len(lrs))}
        return lr_dict

    def test(
        self,
        model: nn.Module = None,
        test_loader: torch.utils.data.DataLoader = None,
        loss: torch.nn.modules.loss._Loss = None,
        silent_mode: bool = False,
        test_metrics_list=None,
        loss_logging_items_names=None,
        metrics_progress_verbose=False,
        test_phase_callbacks=None,
        use_ema_net=True,
    ) -> Dict[str, float]:
        """
        Evaluates the model on given dataloader and metrics.
        :param model: model to perfrom test on. When none is given, will try to use self.net (defalut=None).
        :param test_loader: dataloader to perform test on.
        :param test_metrics_list: (list(torchmetrics.Metric)) metrics list for evaluation.
        :param silent_mode: (bool) controls verbosity
        :param metrics_progress_verbose: (bool) controls the verbosity of metrics progress (default=False). Slows down the program.
        :param use_ema_net (bool) whether to perform test on self.ema_model.ema (when self.ema_model.ema exists,
            otherwise self.net will be tested) (default=True)
        :return: results tuple (tuple) containing the loss items and metric values.

        All of the above args will override Trainer's corresponding attribute when not equal to None. Then evaluation
         is ran on self.test_loader with self.test_metrics.
        """

        self.net = model or self.net

        # IN CASE TRAINING WAS PERFROMED BEFORE TEST- MAKE SURE TO TEST THE EMA MODEL (UNLESS SPECIFIED OTHERWISE BY
        # use_ema_net)

        if use_ema_net and self.ema_model is not None:
            keep_model = self.net
            self.net = self.ema_model.ema

        self._prep_for_test(
            test_loader=test_loader,
            loss=loss,
            test_metrics_list=test_metrics_list,
            loss_logging_items_names=loss_logging_items_names,
            test_phase_callbacks=test_phase_callbacks,
        )

        context = PhaseContext(
            criterion=self.criterion,
            device=self.device,
            sg_logger=self.sg_logger,
        )
        if test_metrics_list:
            context.update_context(test_metrics=self.test_metrics)
        if test_phase_callbacks:
            context.update_context(net=self.net)
            context.update_context(test_loader=test_loader)

        self.phase_callback_handler.on_test_loader_start(context)
        test_results = self.evaluate(
            data_loader=test_loader,
            metrics=self.test_metrics,
            evaluation_type=EvaluationType.TEST,
            silent_mode=silent_mode,
            metrics_progress_verbose=metrics_progress_verbose,
        )
        self.phase_callback_handler.on_test_loader_end(context)

        # SWITCH BACK BETWEEN NETS SO AN ADDITIONAL TRAINING CAN BE DONE AFTER TEST
        if use_ema_net and self.ema_model is not None:
            self.net = keep_model

        self._first_backward = True

        return test_results

    def _validate_epoch(self, context: PhaseContext, silent_mode: bool = False) -> Dict[str, float]:
        """
        Runs evaluation on self.valid_loader, with self.valid_metrics.

        :param epoch: (int) epoch idx
        :param silent_mode: (bool) controls verbosity

        :return: results tuple (tuple) containing the loss items and metric values.
        """
        self.net.eval()
        self._reset_metrics()
        self.valid_metrics.to(device_config.device)
        return self.evaluate(
            data_loader=self.valid_loader, metrics=self.valid_metrics, evaluation_type=EvaluationType.VALIDATION, epoch=context.epoch, silent_mode=silent_mode
        )

    def _test_epoch(self, data_loader: DataLoader, context: PhaseContext, silent_mode: bool = False, dataset_name: str = "") -> Dict[str, float]:
        """
        Evaluate the input loader on given metrics.

        :param epoch: (int) epoch idx
        :param silent_mode: (bool) controls verbosity

        :return: results tuple (tuple) containing the loss items and metric values.
        """
        self.net.eval()
        self._reset_metrics()
        self.test_metrics.to(device_config.device)
        return self.evaluate(
            data_loader=data_loader,
            metrics=self.test_metrics,
            evaluation_type=EvaluationType.TEST,
            epoch=context.epoch,
            silent_mode=silent_mode,
            dataset_name=dataset_name,
        )

    def evaluate(
        self,
        data_loader: torch.utils.data.DataLoader,
        metrics: MetricCollection,
        evaluation_type: EvaluationType,
        epoch: int = None,
        silent_mode: bool = False,
        metrics_progress_verbose: bool = False,
        dataset_name: str = "",
    ) -> Dict[str, float]:
        """
        Evaluates the model on given dataloader and metrics.

        :param data_loader: dataloader to perform evaluataion on
        :param metrics: (MetricCollection) metrics for evaluation
        :param evaluation_type: (EvaluationType) controls which phase callbacks will be used (for example, on batch end,
            when evaluation_type=EvaluationType.VALIDATION the Phase.VALIDATION_BATCH_END callbacks will be triggered)
        :param epoch: (int) epoch idx
        :param silent_mode: (bool) controls verbosity
        :param metrics_progress_verbose: (bool) controls the verbosity of metrics progress (default=False).
            Slows down the program significantly.

        :return: results tuple (tuple) containing the loss items and metric values.
        """

        # THE DISABLE FLAG CONTROLS WHETHER THE PROGRESS BAR IS SILENT OR PRINTS THE LOGS
        loss_avg_meter = core_utils.utils.AverageMeter()

        lr_warmup_epochs = self.training_params.lr_warmup_epochs if self.training_params else None
        context = PhaseContext(
            net=self.net,
            epoch=epoch,
            metrics_compute_fn=metrics,
            loss_avg_meter=loss_avg_meter,
            criterion=self.criterion,
            device=device_config.device,
            lr_warmup_epochs=lr_warmup_epochs,
            sg_logger=self.sg_logger,
            train_loader=self.train_loader,
            valid_loader=self.valid_loader,
            loss_logging_items_names=self.loss_logging_items_names,
        )

        with tqdm(data_loader, bar_format="{l_bar}{bar:10}{r_bar}", dynamic_ncols=True, disable=silent_mode) as progress_bar_data_loader:

            if not silent_mode:
                # PRINT TITLES
                pbar_start_msg = "Validating" if evaluation_type == EvaluationType.VALIDATION else "Testing"
                if dataset_name:
                    pbar_start_msg += f' dataset="{dataset_name}:"'
                if epoch:
                    pbar_start_msg += f" epoch {epoch}"
                progress_bar_data_loader.set_description(pbar_start_msg)

            with torch.no_grad():
                for batch_idx, batch_items in enumerate(progress_bar_data_loader):
                    batch_items = core_utils.tensor_container_to_device(batch_items, device_config.device, non_blocking=True)
                    inputs, targets, additional_batch_items = sg_trainer_utils.unpack_batch_items(batch_items)

                    # TRIGGER PHASE CALLBACKS CORRESPONDING TO THE EVALUATION TYPE
                    context.update_context(
                        batch_idx=batch_idx, inputs=inputs, target=targets, additional_batch_items=additional_batch_items, **additional_batch_items
                    )
                    if evaluation_type == EvaluationType.VALIDATION:
                        self.phase_callback_handler.on_validation_batch_start(context)
                    else:
                        self.phase_callback_handler.on_test_batch_start(context)

                    output = self.net(inputs)
                    context.update_context(preds=output)

                    if self.criterion is not None:
                        # STORE THE loss_items ONLY, THE 1ST RETURNED VALUE IS THE loss FOR BACKPROP DURING TRAINING
                        loss_tuple = self._get_losses(output, targets)[1].cpu()
                        context.update_context(loss_log_items=loss_tuple)

                    # TRIGGER PHASE CALLBACKS CORRESPONDING TO THE EVALUATION TYPE
                    if evaluation_type == EvaluationType.VALIDATION:
                        self.phase_callback_handler.on_validation_batch_end(context)
                    else:
                        self.phase_callback_handler.on_test_batch_end(context)

                    # COMPUTE METRICS IF PROGRESS VERBOSITY IS SET
                    if metrics_progress_verbose and not silent_mode:
                        # COMPUTE THE RUNNING USER METRICS AND LOSS RUNNING ITEMS. RESULT TUPLE IS THEIR CONCATENATION.
                        logging_values = get_logging_values(loss_avg_meter, metrics, self.criterion)
                        pbar_message_dict = get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

                        progress_bar_data_loader.set_postfix(**pbar_message_dict)

                    if evaluation_type == EvaluationType.VALIDATION and self.max_valid_batches is not None and self.max_valid_batches - 1 <= batch_idx:
                        break

            logging_values = get_logging_values(loss_avg_meter, metrics, self.criterion)
            # NEED TO COMPUTE METRICS FOR THE FIRST TIME IF PROGRESS VERBOSITY IS NOT SET
            if not metrics_progress_verbose:
                # COMPUTE THE RUNNING USER METRICS AND LOSS RUNNING ITEMS. RESULT TUPLE IS THEIR CONCATENATION.
                pbar_message_dict = get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

                progress_bar_data_loader.set_postfix(**pbar_message_dict)

            # TODO: SUPPORT PRINTING AP PER CLASS- SINCE THE METRICS ARE NOT HARD CODED ANYMORE (as done in
            #  calc_batch_prediction_accuracy_per_class in metric_utils.py), THIS IS ONLY RELEVANT WHEN CHOOSING
            #  DETECTIONMETRICS, WHICH ALREADY RETURN THE METRICS VALUEST HEMSELVES AND NOT THE ITEMS REQUIRED FOR SUCH
            #  COMPUTATION. ALSO REMOVE THE BELOW LINES BY IMPLEMENTING CRITERION AS A TORCHMETRIC.

            if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
                logging_values = reduce_results_tuple_for_ddp(logging_values, next(self.net.parameters()).device)

        return get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

    def _instantiate_net(
        self, architecture: Union[torch.nn.Module, SgModule.__class__, str], arch_params: dict, checkpoint_params: dict, *args, **kwargs
    ) -> tuple:
        """
        Instantiates nn.Module according to architecture and arch_params, and handles pretrained weights and the required
            module manipulation (i.e head replacement).

        :param architecture: String, torch.nn.Module or uninstantiated SgModule class describing the netowrks architecture.
        :param arch_params: Architecture's parameters passed to networks c'tor.
        :param checkpoint_params: checkpoint loading related parameters dictionary with 'pretrained_weights' key,
            s.t it's value is a string describing the dataset of the pretrained weights (for example "imagenent").

        :return: instantiated netowrk i.e torch.nn.Module, architecture_class (will be none when architecture is not str)

        """
        pretrained_weights = core_utils.get_param(checkpoint_params, "pretrained_weights", default_val=None)

        if pretrained_weights is not None:
            num_classes_new_head = arch_params.num_classes
            arch_params.num_classes = PRETRAINED_NUM_CLASSES[pretrained_weights]

        if isinstance(architecture, str):
            architecture_cls = ARCHITECTURES[architecture]
            net = architecture_cls(arch_params=arch_params)
        elif isinstance(architecture, SgModule.__class__):
            net = architecture(arch_params)
        else:
            net = architecture

        if pretrained_weights:
            load_pretrained_weights(net, architecture, pretrained_weights)
            if num_classes_new_head != arch_params.num_classes:
                net.replace_head(new_num_classes=num_classes_new_head)
                arch_params.num_classes = num_classes_new_head

        return net

    def _instantiate_ema_model(self, ema_params: Mapping[str, Any]) -> ModelEMA:
        """Instantiate ema model for standard SgModule.
        :param decay_type: (str) The decay climb schedule. See EMA_DECAY_FUNCTIONS for more details.
        :param decay: The maximum decay value. As the training process advances, the decay will climb towards this value
                      according to decay_type schedule. See EMA_DECAY_FUNCTIONS for more details.
        :param kwargs: Additional parameters for the decay function. See EMA_DECAY_FUNCTIONS for more details.
        """
        logger.info(f"Using EMA with params {ema_params}")
        return ModelEMA.from_params(self.net, **ema_params)

    @property
    def get_net(self):
        """
        Getter for network.
        :return: torch.nn.Module, self.net
        """
        return self.net

    def set_net(self, net: torch.nn.Module):
        """
        Setter for network.

        :param net: torch.nn.Module, value to set net
        :return:
        """
        self.net = net

    def set_ckpt_best_name(self, ckpt_best_name):
        """
        Setter for best checkpoint filename.

        :param ckpt_best_name: str, value to set ckpt_best_name
        """
        self.ckpt_best_name = ckpt_best_name

    def set_ema(self, val: bool):
        """
        Setter for self.ema

        :param val: bool, value to set ema
        """
        self.ema = val

    def _init_loss_logging_names(self, loss_logging_items):
        criterion_name = self.criterion.__class__.__name__
        component_names = None
        if hasattr(self.criterion, "component_names"):
            component_names = self.criterion.component_names
        elif len(loss_logging_items) > 1:
            component_names = ["loss_" + str(i) for i in range(len(loss_logging_items))]

        if component_names is not None:
            self.loss_logging_items_names = [criterion_name + "/" + component_name for component_name in component_names]
            if self.metric_to_watch in component_names:
                self.metric_to_watch = criterion_name + "/" + self.metric_to_watch
        else:
            self.loss_logging_items_names = [criterion_name]

    @classmethod
    def quantize_from_config(cls, cfg: Union[DictConfig, dict]) -> Tuple[nn.Module, Tuple]:
        """
        Perform quantization aware training (QAT) according to a recipe configuration.

        This method will instantiate all the objects specified in the recipe, build and quantize the model,
        and calibrate the quantized model. The resulting quantized model and the output of the trainer.train()
        method will be returned.

        The quantized model will be exported to ONNX along with other checkpoints.

        The call to self.quantize (see docs in the next method) is done with the created
         train_loader and valid_loader. If no calibration data loader is passed through cfg.calib_loader,
         a train data laoder with the validation transforms is used for calibration.

        :param cfg: The parsed DictConfig object from yaml recipe files or a dictionary.
        :return: A tuple containing the quantized model and the output of trainer.train() method.

        :raises ValueError: If the recipe does not have the required key `quantization_params` or
        `checkpoint_params.checkpoint_path` in it.
        :raises NotImplementedError: If the recipe requests multiple GPUs or num_gpus is not equal to 1.
        :raises ImportError: If pytorch-quantization import was unsuccessful

        """
        if _imported_pytorch_quantization_failure is not None:
            raise _imported_pytorch_quantization_failure

        # INSTANTIATE ALL OBJECTS IN CFG
        cfg = hydra.utils.instantiate(cfg)

        # TRIGGER CFG MODIFYING CALLBACKS
        cfg = cls._trigger_cfg_modifying_callbacks(cfg)

        quantization_params = get_param(cfg, "quantization_params")

        if quantization_params is None:
            logger.warning("Your recipe does not include quantization_params. Using default quantization params.")
            quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
            cfg.quantization_params = quantization_params

        if get_param(cfg.checkpoint_params, "checkpoint_path") is None and get_param(cfg.checkpoint_params, "pretrained_weights") is None:
            raise ValueError("Starting checkpoint / pretrained weights are a must for QAT finetuning.")

        num_gpus = core_utils.get_param(cfg, "num_gpus")
        multi_gpu = core_utils.get_param(cfg, "multi_gpu")
        device = core_utils.get_param(cfg, "device")
        if num_gpus != 1:
            raise NotImplementedError(
                f"Recipe requests multi_gpu={cfg.multi_gpu} and num_gpus={cfg.num_gpus}. QAT is proven to work correctly only with multi_gpu=OFF and num_gpus=1"
            )

        setup_device(device=device, multi_gpu=multi_gpu, num_gpus=num_gpus)

        # INSTANTIATE DATA LOADERS
        train_dataloader = dataloaders.get(
            name=get_param(cfg, "train_dataloader"),
            dataset_params=copy.deepcopy(cfg.dataset_params.train_dataset_params),
            dataloader_params=copy.deepcopy(cfg.dataset_params.train_dataloader_params),
        )

        val_dataloader = dataloaders.get(
            name=get_param(cfg, "val_dataloader"),
            dataset_params=copy.deepcopy(cfg.dataset_params.val_dataset_params),
            dataloader_params=copy.deepcopy(cfg.dataset_params.val_dataloader_params),
        )

        if "calib_dataloader" in cfg:
            calib_dataloader_name = get_param(cfg, "calib_dataloader")
            calib_dataloader_params = copy.deepcopy(cfg.dataset_params.calib_dataloader_params)
            calib_dataset_params = copy.deepcopy(cfg.dataset_params.calib_dataset_params)
        else:
            calib_dataloader_name = get_param(cfg, "train_dataloader")
            calib_dataloader_params = copy.deepcopy(cfg.dataset_params.train_dataloader_params)
            calib_dataset_params = copy.deepcopy(cfg.dataset_params.train_dataset_params)

            # if we use whole dataloader for calibration, don't shuffle it
            # HistogramCalibrator collection routine is sensitive to order of batches and produces slightly different results
            # if we use several batches, we don't want it to be from one class if it's sequential in dataloader
            # model is in eval mode, so BNs will not be affected
            calib_dataloader_params.shuffle = cfg.quantization_params.calib_params.num_calib_batches is not None
            # we don't need training transforms during calibration, distribution of activations will be skewed
            calib_dataset_params.transforms = cfg.dataset_params.val_dataset_params.transforms

        calib_dataloader = dataloaders.get(
            name=calib_dataloader_name,
            dataset_params=calib_dataset_params,
            dataloader_params=calib_dataloader_params,
        )

        # BUILD MODEL
        model = models.get(
            model_name=cfg.arch_params.get("model_name", None) or cfg.architecture,
            num_classes=cfg.get("num_classes", None) or cfg.arch_params.num_classes,
            arch_params=cfg.arch_params,
            strict_load=cfg.checkpoint_params.strict_load,
            pretrained_weights=cfg.checkpoint_params.pretrained_weights,
            checkpoint_path=cfg.checkpoint_params.checkpoint_path,
            load_backbone=False,
        )

        recipe_logged_cfg = {"recipe_config": OmegaConf.to_container(cfg, resolve=True)}
        trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=get_param(cfg, "ckpt_root_dir"))

        if quantization_params.ptq_only:
            res = trainer.ptq(
                calib_loader=calib_dataloader,
                model=model,
                quantization_params=quantization_params,
                valid_loader=val_dataloader,
                valid_metrics_list=cfg.training_hyperparams.valid_metrics_list,
            )
        else:
            res = trainer.qat(
                model=model,
                quantization_params=quantization_params,
                calib_loader=calib_dataloader,
                valid_loader=val_dataloader,
                train_loader=train_dataloader,
                training_params=cfg.training_hyperparams,
                additional_qat_configs_to_log=recipe_logged_cfg,
            )

        return model, res

    def qat(
        self,
        calib_loader: DataLoader,
        model: torch.nn.Module,
        valid_loader: DataLoader,
        train_loader: DataLoader,
        training_params: Mapping = None,
        quantization_params: Mapping = None,
        additional_qat_configs_to_log: Dict = None,
        valid_metrics_list: List[Metric] = None,
    ):
        """
        Performs post-training quantization (PTQ), and then quantization-aware training (QAT).
        Exports the ONNX models (ckpt_best.pth of QAT and the calibrated model) to the checkpoints directory.

        :param calib_loader: DataLoader, data loader for calibration.

        :param model: torch.nn.Module, Model to perform QAT/PTQ on. When None, will try to use the network from
        previous self.train call(that is, if there was one - will try to use self.ema_model.ema if EMA was used,
        otherwise self.net)


        :param valid_loader: DataLoader, data loader for validation. Used both for validating the calibrated model after PTQ and during QAT.
            When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

        :param train_loader: DataLoader, data loader for QA training, can be ignored when quantization_params["ptq_only"]=True (default=None).

        :param quantization_params: Mapping, with the following entries:defaults-
            selective_quantizer_params:
              calibrator_w: "max"        # calibrator type for weights, acceptable types are ["max", "histogram"]
              calibrator_i: "histogram"  # calibrator type for inputs acceptable types are ["max", "histogram"]
              per_channel: True          # per-channel quantization of weights, activations stay per-tensor by default
              learn_amax: False          # enable learnable amax in all TensorQuantizers using straight-through estimator
              skip_modules:              # optional list of module names (strings) to skip from quantization

            calib_params:
              histogram_calib_method: "percentile"  # calibration method for all "histogram" calibrators,
                                                                # acceptable types are ["percentile", "entropy", mse"],
                                                                # "max" calibrators always use "max"

              percentile: 99.99                     # percentile for all histogram calibrators with method "percentile",
                                                    # other calibrators are not affected

              num_calib_batches:                    # number of batches to use for calibration, if None, 512 / batch_size will be used
              verbose: False                        # if calibrator should be verbose


              When None, the above default config is used (default=None)


        :param training_params: Mapping, training hyper parameters for QAT, same as in super.train(...). When None, will try to use self.training_params
         which is set in previous self.train(..) call (default=None).

        :param additional_qat_configs_to_log: Dict, Optional dictionary containing configs that will be added to the QA training's
         sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.

        :param valid_metrics_list:  (list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model.
        When None, the validation metrics from training_params are used). (default=None).

        :return: Validation results of the QAT model in case quantization_params['ptq_only']=False and of the PTQ
        model otherwise.
        """

        if quantization_params is None:
            quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
            logger.info(f"Using default quantization params: {quantization_params}")
        valid_metrics_list = valid_metrics_list or get_param(training_params, "valid_metrics_list")

        _ = self.ptq(
            calib_loader=calib_loader,
            model=model,
            quantization_params=quantization_params,
            valid_loader=valid_loader,
            valid_metrics_list=valid_metrics_list,
            deepcopy_model_for_export=True,
        )
        # TRAIN
        model.train()
        torch.cuda.empty_cache()

        res = self.train(
            model=model,
            train_loader=train_loader,
            valid_loader=valid_loader,
            training_params=training_params,
            additional_configs_to_log=additional_qat_configs_to_log,
        )

        # EXPORT QUANTIZED MODEL TO ONNX
        input_shape = next(iter(valid_loader))[0].shape
        os.makedirs(self.checkpoints_dir_path, exist_ok=True)
        qdq_onnx_path = os.path.join(self.checkpoints_dir_path, f"{self.experiment_name}_{'x'.join((str(x) for x in input_shape))}_qat.onnx")

        # TODO: modify SG's convert_to_onnx for quantized models and use it instead
        export_quantized_module_to_onnx(
            model=model.cpu(),
            onnx_filename=qdq_onnx_path,
            input_shape=input_shape,
            input_size=input_shape,
            train=False,
        )
        logger.info(f"Exported QAT ONNX to {qdq_onnx_path}")
        return res

    def ptq(
        self,
        calib_loader: DataLoader,
        model: nn.Module,
        valid_loader: DataLoader,
        valid_metrics_list: List[torchmetrics.Metric],
        quantization_params: Dict = None,
        deepcopy_model_for_export: bool = False,
    ):
        """
        Performs post-training quantization (calibration of the model)..

        :param calib_loader: DataLoader, data loader for calibration.

        :param model: torch.nn.Module, Model to perform calibration on. When None, will try to use self.net which is
        set in previous self.train(..) call (default=None).

        :param valid_loader: DataLoader, data loader for validation. Used both for validating the calibrated model.
            When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

        :param quantization_params: Mapping, with the following entries:defaults-
            selective_quantizer_params:
              calibrator_w: "max"        # calibrator type for weights, acceptable types are ["max", "histogram"]
              calibrator_i: "histogram"  # calibrator type for inputs acceptable types are ["max", "histogram"]
              per_channel: True          # per-channel quantization of weights, activations stay per-tensor by default
              learn_amax: False          # enable learnable amax in all TensorQuantizers using straight-through estimator
              skip_modules:              # optional list of module names (strings) to skip from quantization

            calib_params:
              histogram_calib_method: "percentile"  # calibration method for all "histogram" calibrators,
                                                                # acceptable types are ["percentile", "entropy", mse"],
                                                                # "max" calibrators always use "max"

              percentile: 99.99                     # percentile for all histogram calibrators with method "percentile",
                                                    # other calibrators are not affected

              num_calib_batches:                    # number of batches to use for calibration, if None, 512 / batch_size will be used
              verbose: False                        # if calibrator should be verbose


              When None, the above default config is used (default=None)



        :param valid_metrics_list:  (list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model.

        :param deepcopy_model_for_export: bool, Whether to export deepcopy(model). Necessary in case further training is
            performed and prep_model_for_conversion makes the network un-trainable (i.e RepVGG blocks).

        :return: Validation results of the calibrated model.
        """

        logger.debug("Performing post-training quantization (PTQ)...")
        logger.debug(f"Experiment name {self.experiment_name}")

        run_id = core_utils.get_param(self.training_params, "run_id", None)
        logger.debug(f"Experiment run id {run_id}")

        self.checkpoints_dir_path = get_checkpoints_dir_path(ckpt_root_dir=self.ckpt_root_dir, experiment_name=self.experiment_name, run_id=run_id)
        logger.debug(f"Checkpoints directory {self.checkpoints_dir_path}")

        os.makedirs(self.checkpoints_dir_path, exist_ok=True)

        from super_gradients.training.utils.quantization.fix_pytorch_quantization_modules import patch_pytorch_quantization_modules_if_needed

        patch_pytorch_quantization_modules_if_needed()

        if quantization_params is None:
            quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
            logger.info(f"Using default quantization params: {quantization_params}")

        model = unwrap_model(model)  # Unwrap model in case it is wrapped with DataParallel or DistributedDataParallel

        selective_quantizer_params = get_param(quantization_params, "selective_quantizer_params")
        calib_params = get_param(quantization_params, "calib_params")
        model.to(device_config.device)
        # QUANTIZE MODEL
        model.eval()
        fuse_repvgg_blocks_residual_branches(model)
        q_util = SelectiveQuantizer(
            default_quant_modules_calibrator_weights=get_param(selective_quantizer_params, "calibrator_w"),
            default_quant_modules_calibrator_inputs=get_param(selective_quantizer_params, "calibrator_i"),
            default_per_channel_quant_weights=get_param(selective_quantizer_params, "per_channel"),
            default_learn_amax=get_param(selective_quantizer_params, "learn_amax"),
            verbose=get_param(calib_params, "verbose"),
        )
        q_util.register_skip_quantization(layer_names=get_param(selective_quantizer_params, "skip_modules"))
        q_util.quantize_module(model)
        # CALIBRATE MODEL
        logger.info("Calibrating model...")
        calibrator = QuantizationCalibrator(
            verbose=get_param(calib_params, "verbose"),
            torch_hist=True,
        )
        calibrator.calibrate_model(
            model,
            method=get_param(calib_params, "histogram_calib_method"),
            calib_data_loader=calib_loader,
            num_calib_batches=get_param(calib_params, "num_calib_batches") or len(calib_loader),
            percentile=get_param(calib_params, "percentile", 99.99),
        )
        calibrator.reset_calibrators(model)  # release memory taken by calibrators
        # VALIDATE PTQ MODEL AND PRINT SUMMARY
        logger.info("Validating PTQ model...")
        valid_metrics_dict = self.test(model=model, test_loader=valid_loader, test_metrics_list=valid_metrics_list)
        results = ["PTQ Model Validation Results"]
        results += [f"   - {metric:10}: {value}" for metric, value in valid_metrics_dict.items()]
        logger.info("\n".join(results))

        input_shape = next(iter(valid_loader))[0].shape
        input_shape_with_batch_size_one = tuple([1] + list(input_shape[1:]))
        qdq_onnx_path = os.path.join(
            self.checkpoints_dir_path, f"{self.experiment_name}_{'x'.join((str(x) for x in input_shape_with_batch_size_one))}_ptq.onnx"
        )
        logger.debug(f"Output ONNX file path {qdq_onnx_path}")

        if isinstance(model, ExportableObjectDetectionModel):
            model: ExportableObjectDetectionModel = typing.cast(ExportableObjectDetectionModel, model)
            export_result = model.export(
                output=qdq_onnx_path,
                quantization_mode=ExportQuantizationMode.INT8,
                input_image_shape=(input_shape_with_batch_size_one[2], input_shape_with_batch_size_one[3]),
                preprocessing=False,
                postprocessing=True,
            )
            logger.info(repr(export_result))
        else:
            # TODO: modify SG's convert_to_onnx for quantized models and use it instead
            export_quantized_module_to_onnx(
                model=model.cpu(),
                onnx_filename=qdq_onnx_path,
                input_shape=input_shape_with_batch_size_one,
                input_size=input_shape_with_batch_size_one,
                train=False,
                deepcopy_model=deepcopy_model_for_export,
            )

        return valid_metrics_dict

get_net property

Getter for network.

Returns:

Type Description

torch.nn.Module, self.net

__init__(experiment_name, device=None, multi_gpu=None, ckpt_root_dir=None)

Parameters:

Name Type Description Default
experiment_name str

Used for logging and loading purposes

required
device Optional[str]

If equal to 'cpu' runs on the CPU otherwise on GPU

None
multi_gpu Union[MultiGPUMode, str]

If True, runs on all available devices otherwise saves the Checkpoints Locally checkpoint from cloud service, otherwise overwrites the local checkpoints file

None
ckpt_root_dir Optional[str]

Local root directory path where all experiment logging directories will reside. When none is give, it is assumed that pkg_resources.resource_filename('checkpoints', "") exists and will be used.

None
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def __init__(self, experiment_name: str, device: Optional[str] = None, multi_gpu: Union[MultiGPUMode, str] = None, ckpt_root_dir: Optional[str] = None):
    """

    :param experiment_name:                 Used for logging and loading purposes
    :param device:                          If equal to 'cpu' runs on the CPU otherwise on GPU
    :param multi_gpu:                       If True, runs on all available devices
                                            otherwise saves the Checkpoints Locally
                                            checkpoint from cloud service, otherwise overwrites the local checkpoints file
    :param ckpt_root_dir:                   Local root directory path where all experiment logging directories will
                                            reside. When none is give, it is assumed that
                                            pkg_resources.resource_filename('checkpoints', "") exists and will be used.

    """

    # This should later me removed
    if device is not None or multi_gpu is not None:
        raise KeyError(
            "Trainer does not accept anymore 'device' and 'multi_gpu' as argument. "
            "Both should instead be passed to "
            "super_gradients.setup_device(device=..., multi_gpu=..., num_gpus=...)"
        )

    if require_ddp_setup():
        raise DDPNotSetupException()

    # SET THE EMPTY PROPERTIES
    self.net, self.architecture, self.arch_params, self.dataset_interface = None, None, None, None
    self.train_loader, self.valid_loader, self.test_loaders = None, None, {}
    self.ema = None
    self.ema_model = None
    self.sg_logger = None
    self.update_param_groups = None
    self.criterion = None
    self.training_params = None
    self.scaler = None
    self.phase_callbacks = None
    self.checkpoint_params = None
    self.pre_prediction_callback = None

    # SET THE DEFAULT PROPERTIES
    self.half_precision = False
    self.load_backbone = False
    self.load_weights_only = False
    self.ddp_silent_mode = is_ddp_subprocess()

    self.model_weight_averaging = None
    self.average_model_checkpoint_filename = "average_model.pth"
    self.start_epoch = 0
    self.best_metric = np.inf
    self.load_ema_as_net = False

    self._first_backward = True

    # METRICS
    self.loss_logging_items_names = None
    self.train_metrics: Optional[MetricCollection] = None
    self.valid_metrics: Optional[MetricCollection] = None
    self.test_metrics: Optional[MetricCollection] = None
    self.greater_metric_to_watch_is_better = None
    self.metric_to_watch = None
    self.greater_train_metrics_is_better: Dict[str, bool] = {}  # For each metric, indicates if greater is better
    self.greater_valid_metrics_is_better: Dict[str, bool] = {}

    # Checkpoint Attributes
    self.ckpt_root_dir = ckpt_root_dir
    self.experiment_name = experiment_name
    self.checkpoints_dir_path = None
    self.load_checkpoint = False
    self.ckpt_best_name = "ckpt_best.pth"

    self.phase_callback_handler: CallbackHandler = None

    # SET THE DEFAULTS
    # TODO: SET DEFAULT TRAINING PARAMS FOR EACH TASK

    default_results_titles = ["Train Loss", "Train Acc", "Train Top5", "Valid Loss", "Valid Acc", "Valid Top5"]

    self.results_titles = default_results_titles

    default_train_metrics, default_valid_metrics = MetricCollection([Accuracy(), Top5()]), MetricCollection([Accuracy(), Top5()])

    self.train_metrics, self.valid_metrics = default_train_metrics, default_valid_metrics

    self.train_monitored_values = {}
    self.valid_monitored_values = {}
    self.test_monitored_values = {}
    self.max_train_batches = None
    self.max_valid_batches = None

    self._epoch_start_logging_values = {}
    self._torch_lr_scheduler = None

evaluate(data_loader, metrics, evaluation_type, epoch=None, silent_mode=False, metrics_progress_verbose=False, dataset_name='')

Evaluates the model on given dataloader and metrics.

Parameters:

Name Type Description Default
data_loader torch.utils.data.DataLoader

dataloader to perform evaluataion on

required
metrics MetricCollection

(MetricCollection) metrics for evaluation

required
evaluation_type EvaluationType

(EvaluationType) controls which phase callbacks will be used (for example, on batch end, when evaluation_type=EvaluationType.VALIDATION the Phase.VALIDATION_BATCH_END callbacks will be triggered)

required
epoch int

(int) epoch idx

None
silent_mode bool

(bool) controls verbosity

False
metrics_progress_verbose bool

(bool) controls the verbosity of metrics progress (default=False). Slows down the program significantly.

False

Returns:

Type Description
Dict[str, float]

results tuple (tuple) containing the loss items and metric values.

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
def evaluate(
    self,
    data_loader: torch.utils.data.DataLoader,
    metrics: MetricCollection,
    evaluation_type: EvaluationType,
    epoch: int = None,
    silent_mode: bool = False,
    metrics_progress_verbose: bool = False,
    dataset_name: str = "",
) -> Dict[str, float]:
    """
    Evaluates the model on given dataloader and metrics.

    :param data_loader: dataloader to perform evaluataion on
    :param metrics: (MetricCollection) metrics for evaluation
    :param evaluation_type: (EvaluationType) controls which phase callbacks will be used (for example, on batch end,
        when evaluation_type=EvaluationType.VALIDATION the Phase.VALIDATION_BATCH_END callbacks will be triggered)
    :param epoch: (int) epoch idx
    :param silent_mode: (bool) controls verbosity
    :param metrics_progress_verbose: (bool) controls the verbosity of metrics progress (default=False).
        Slows down the program significantly.

    :return: results tuple (tuple) containing the loss items and metric values.
    """

    # THE DISABLE FLAG CONTROLS WHETHER THE PROGRESS BAR IS SILENT OR PRINTS THE LOGS
    loss_avg_meter = core_utils.utils.AverageMeter()

    lr_warmup_epochs = self.training_params.lr_warmup_epochs if self.training_params else None
    context = PhaseContext(
        net=self.net,
        epoch=epoch,
        metrics_compute_fn=metrics,
        loss_avg_meter=loss_avg_meter,
        criterion=self.criterion,
        device=device_config.device,
        lr_warmup_epochs=lr_warmup_epochs,
        sg_logger=self.sg_logger,
        train_loader=self.train_loader,
        valid_loader=self.valid_loader,
        loss_logging_items_names=self.loss_logging_items_names,
    )

    with tqdm(data_loader, bar_format="{l_bar}{bar:10}{r_bar}", dynamic_ncols=True, disable=silent_mode) as progress_bar_data_loader:

        if not silent_mode:
            # PRINT TITLES
            pbar_start_msg = "Validating" if evaluation_type == EvaluationType.VALIDATION else "Testing"
            if dataset_name:
                pbar_start_msg += f' dataset="{dataset_name}:"'
            if epoch:
                pbar_start_msg += f" epoch {epoch}"
            progress_bar_data_loader.set_description(pbar_start_msg)

        with torch.no_grad():
            for batch_idx, batch_items in enumerate(progress_bar_data_loader):
                batch_items = core_utils.tensor_container_to_device(batch_items, device_config.device, non_blocking=True)
                inputs, targets, additional_batch_items = sg_trainer_utils.unpack_batch_items(batch_items)

                # TRIGGER PHASE CALLBACKS CORRESPONDING TO THE EVALUATION TYPE
                context.update_context(
                    batch_idx=batch_idx, inputs=inputs, target=targets, additional_batch_items=additional_batch_items, **additional_batch_items
                )
                if evaluation_type == EvaluationType.VALIDATION:
                    self.phase_callback_handler.on_validation_batch_start(context)
                else:
                    self.phase_callback_handler.on_test_batch_start(context)

                output = self.net(inputs)
                context.update_context(preds=output)

                if self.criterion is not None:
                    # STORE THE loss_items ONLY, THE 1ST RETURNED VALUE IS THE loss FOR BACKPROP DURING TRAINING
                    loss_tuple = self._get_losses(output, targets)[1].cpu()
                    context.update_context(loss_log_items=loss_tuple)

                # TRIGGER PHASE CALLBACKS CORRESPONDING TO THE EVALUATION TYPE
                if evaluation_type == EvaluationType.VALIDATION:
                    self.phase_callback_handler.on_validation_batch_end(context)
                else:
                    self.phase_callback_handler.on_test_batch_end(context)

                # COMPUTE METRICS IF PROGRESS VERBOSITY IS SET
                if metrics_progress_verbose and not silent_mode:
                    # COMPUTE THE RUNNING USER METRICS AND LOSS RUNNING ITEMS. RESULT TUPLE IS THEIR CONCATENATION.
                    logging_values = get_logging_values(loss_avg_meter, metrics, self.criterion)
                    pbar_message_dict = get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

                    progress_bar_data_loader.set_postfix(**pbar_message_dict)

                if evaluation_type == EvaluationType.VALIDATION and self.max_valid_batches is not None and self.max_valid_batches - 1 <= batch_idx:
                    break

        logging_values = get_logging_values(loss_avg_meter, metrics, self.criterion)
        # NEED TO COMPUTE METRICS FOR THE FIRST TIME IF PROGRESS VERBOSITY IS NOT SET
        if not metrics_progress_verbose:
            # COMPUTE THE RUNNING USER METRICS AND LOSS RUNNING ITEMS. RESULT TUPLE IS THEIR CONCATENATION.
            pbar_message_dict = get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

            progress_bar_data_loader.set_postfix(**pbar_message_dict)

        # TODO: SUPPORT PRINTING AP PER CLASS- SINCE THE METRICS ARE NOT HARD CODED ANYMORE (as done in
        #  calc_batch_prediction_accuracy_per_class in metric_utils.py), THIS IS ONLY RELEVANT WHEN CHOOSING
        #  DETECTIONMETRICS, WHICH ALREADY RETURN THE METRICS VALUEST HEMSELVES AND NOT THE ITEMS REQUIRED FOR SUCH
        #  COMPUTATION. ALSO REMOVE THE BELOW LINES BY IMPLEMENTING CRITERION AS A TORCHMETRIC.

        if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
            logging_values = reduce_results_tuple_for_ddp(logging_values, next(self.net.parameters()).device)

    return get_train_loop_description_dict(logging_values, metrics, self.loss_logging_items_names)

evaluate_checkpoint(experiment_name, ckpt_name='ckpt_latest.pth', ckpt_root_dir=None, run_id=None) classmethod

Evaluate a checkpoint resulting from one of your previous experiment, using the same parameters (dataset, valid_metrics,...) as used during the training of the experiment

Note: The parameters will be unchanged even if the recipe used for that experiment was changed since then. This is to ensure that validation of the experiment will remain exactly the same as during training.

Example, evaluate the checkpoint "average_model.pth" from experiment "my_experiment_name": >> evaluate_checkpoint(experiment_name="my_experiment_name", ckpt_name="average_model.pth")

Parameters:

Name Type Description Default
experiment_name str

Name of the experiment to validate

required
ckpt_name str

Name of the checkpoint to test ("ckpt_latest.pth", "average_model.pth" or "ckpt_best.pth" for instance)

'ckpt_latest.pth'
ckpt_root_dir Optional[str]

Optional. Directory including the checkpoints

None
run_id Optional[str]

Optional. Run id of the experiment. If None, the most recent run will be loaded.

None

Returns:

Type Description
None

The config that was used for that experiment

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
@classmethod
def evaluate_checkpoint(
    cls,
    experiment_name: str,
    ckpt_name: str = "ckpt_latest.pth",
    ckpt_root_dir: Optional[str] = None,
    run_id: Optional[str] = None,
) -> None:
    """
    Evaluate a checkpoint resulting from one of your previous experiment, using the same parameters (dataset, valid_metrics,...)
    as used during the training of the experiment

    Note:
        The parameters will be unchanged even if the recipe used for that experiment was changed since then.
        This is to ensure that validation of the experiment will remain exactly the same as during training.

    Example, evaluate the checkpoint "average_model.pth" from experiment "my_experiment_name":
        >> evaluate_checkpoint(experiment_name="my_experiment_name", ckpt_name="average_model.pth")

    :param experiment_name:     Name of the experiment to validate
    :param ckpt_name:           Name of the checkpoint to test ("ckpt_latest.pth", "average_model.pth" or "ckpt_best.pth" for instance)
    :param ckpt_root_dir:       Optional. Directory including the checkpoints
    :param run_id:              Optional. Run id of the experiment. If None, the most recent run will be loaded.
    :return:                    The config that was used for that experiment
    """
    logger.info("Evaluate checkpoint")

    if run_id is None:
        run_id = get_latest_run_id(checkpoints_root_dir=ckpt_root_dir, experiment_name=experiment_name)

    # Load the latest config
    cfg = load_experiment_cfg(ckpt_root_dir=ckpt_root_dir, experiment_name=experiment_name, run_id=run_id)

    add_params_to_cfg(cfg, params=["training_hyperparams.resume=True", f"ckpt_name={ckpt_name}"])
    cls.evaluate_from_recipe(cfg)

evaluate_from_recipe(cfg) classmethod

Evaluate according to a cfg recipe configuration.

Note: This script does NOT run training, only validation. Please make sure that the config refers to a PRETRAINED MODEL either from one of your checkpoint or from pretrained weights from model zoo.

Parameters:

Name Type Description Default
cfg DictConfig

The parsed DictConfig from yaml recipe files or a dictionary

required
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@classmethod
def evaluate_from_recipe(cls, cfg: DictConfig) -> Tuple[nn.Module, Tuple]:
    """
    Evaluate according to a cfg recipe configuration.

    Note:   This script does NOT run training, only validation.
            Please make sure that the config refers to a PRETRAINED MODEL either from one of your checkpoint or from pretrained weights from model zoo.
    :param cfg: The parsed DictConfig from yaml recipe files or a dictionary
    """

    setup_device(
        device=core_utils.get_param(cfg, "device"),
        multi_gpu=core_utils.get_param(cfg, "multi_gpu"),
        num_gpus=core_utils.get_param(cfg, "num_gpus"),
    )

    # INSTANTIATE ALL OBJECTS IN CFG
    cfg = hydra.utils.instantiate(cfg)

    trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir)

    # INSTANTIATE DATA LOADERS
    val_dataloader = dataloaders.get(
        name=cfg.val_dataloader, dataset_params=cfg.dataset_params.val_dataset_params, dataloader_params=cfg.dataset_params.val_dataloader_params
    )

    if cfg.checkpoint_params.checkpoint_path is None:
        logger.info(
            "`checkpoint_params.checkpoint_path` was not provided. The recipe will be evaluated using checkpoints_dir.training_hyperparams.ckpt_name"
        )

        eval_run_id = core_utils.get_param(cfg, "training_hyperparams.run_id", None)
        if eval_run_id is None:
            logger.info("`training_hyperparams.run_id` was not provided. Evaluating the latest run.")
            eval_run_id = get_latest_run_id(checkpoints_root_dir=cfg.ckpt_root_dir, experiment_name=cfg.experiment_name)
            # NOTE: `eval_run_id` will be None if no latest run directory was found.

        # NOTE: If eval_run_id is None here, the checkpoint directory will be ckpt_root_dir/experiment_name.
        # This ensures backward compatibility with `super-gradients<=3.1.2` which did not include one directory per run.
        checkpoints_dir = get_checkpoints_dir_path(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir, run_id=eval_run_id)
        checkpoint_path = os.path.join(checkpoints_dir, cfg.training_hyperparams.ckpt_name)
        if os.path.exists(checkpoint_path):
            cfg.checkpoint_params.checkpoint_path = checkpoint_path

    logger.info(f"Evaluating checkpoint: {cfg.checkpoint_params.checkpoint_path}")

    # BUILD NETWORK
    model = models.get(
        model_name=cfg.architecture,
        num_classes=cfg.arch_params.num_classes,
        arch_params=cfg.arch_params,
        strict_load=cfg.checkpoint_params.strict_load,
        pretrained_weights=cfg.checkpoint_params.pretrained_weights,
        checkpoint_path=cfg.checkpoint_params.checkpoint_path,
        load_backbone=cfg.checkpoint_params.load_backbone,
    )

    # TEST
    valid_metrics_dict = trainer.test(model=model, test_loader=val_dataloader, test_metrics_list=cfg.training_hyperparams.valid_metrics_list)

    results = ["Validate Results"]
    results += [f"   - {metric:10}: {value}" for metric, value in valid_metrics_dict.items()]
    logger.info("\n".join(results))

    return model, valid_metrics_dict

ptq(calib_loader, model, valid_loader, valid_metrics_list, quantization_params=None, deepcopy_model_for_export=False)

Performs post-training quantization (calibration of the model)..

Parameters:

Name Type Description Default
calib_loader DataLoader

DataLoader, data loader for calibration.

required
model nn.Module

torch.nn.Module, Model to perform calibration on. When None, will try to use self.net which is set in previous self.train(..) call (default=None).

required
valid_loader DataLoader

DataLoader, data loader for validation. Used both for validating the calibrated model. When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

required
quantization_params Dict

Mapping, with the following entries:defaults- selective_quantizer_params: calibrator_w: "max" # calibrator type for weights, acceptable types are ["max", "histogram"] calibrator_i: "histogram" # calibrator type for inputs acceptable types are ["max", "histogram"] per_channel: True # per-channel quantization of weights, activations stay per-tensor by default learn_amax: False # enable learnable amax in all TensorQuantizers using straight-through estimator skip_modules: # optional list of module names (strings) to skip from quantization calib_params: histogram_calib_method: "percentile" # calibration method for all "histogram" calibrators, # acceptable types are ["percentile", "entropy", mse"], # "max" calibrators always use "max" percentile: 99.99 # percentile for all histogram calibrators with method "percentile", # other calibrators are not affected num_calib_batches: # number of batches to use for calibration, if None, 512 / batch_size will be used verbose: False # if calibrator should be verbose When None, the above default config is used (default=None)

None
valid_metrics_list List[torchmetrics.Metric]

(list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model.

required
deepcopy_model_for_export bool

bool, Whether to export deepcopy(model). Necessary in case further training is performed and prep_model_for_conversion makes the network un-trainable (i.e RepVGG blocks).

False

Returns:

Type Description

Validation results of the calibrated model.

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
def ptq(
    self,
    calib_loader: DataLoader,
    model: nn.Module,
    valid_loader: DataLoader,
    valid_metrics_list: List[torchmetrics.Metric],
    quantization_params: Dict = None,
    deepcopy_model_for_export: bool = False,
):
    """
    Performs post-training quantization (calibration of the model)..

    :param calib_loader: DataLoader, data loader for calibration.

    :param model: torch.nn.Module, Model to perform calibration on. When None, will try to use self.net which is
    set in previous self.train(..) call (default=None).

    :param valid_loader: DataLoader, data loader for validation. Used both for validating the calibrated model.
        When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

    :param quantization_params: Mapping, with the following entries:defaults-
        selective_quantizer_params:
          calibrator_w: "max"        # calibrator type for weights, acceptable types are ["max", "histogram"]
          calibrator_i: "histogram"  # calibrator type for inputs acceptable types are ["max", "histogram"]
          per_channel: True          # per-channel quantization of weights, activations stay per-tensor by default
          learn_amax: False          # enable learnable amax in all TensorQuantizers using straight-through estimator
          skip_modules:              # optional list of module names (strings) to skip from quantization

        calib_params:
          histogram_calib_method: "percentile"  # calibration method for all "histogram" calibrators,
                                                            # acceptable types are ["percentile", "entropy", mse"],
                                                            # "max" calibrators always use "max"

          percentile: 99.99                     # percentile for all histogram calibrators with method "percentile",
                                                # other calibrators are not affected

          num_calib_batches:                    # number of batches to use for calibration, if None, 512 / batch_size will be used
          verbose: False                        # if calibrator should be verbose


          When None, the above default config is used (default=None)



    :param valid_metrics_list:  (list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model.

    :param deepcopy_model_for_export: bool, Whether to export deepcopy(model). Necessary in case further training is
        performed and prep_model_for_conversion makes the network un-trainable (i.e RepVGG blocks).

    :return: Validation results of the calibrated model.
    """

    logger.debug("Performing post-training quantization (PTQ)...")
    logger.debug(f"Experiment name {self.experiment_name}")

    run_id = core_utils.get_param(self.training_params, "run_id", None)
    logger.debug(f"Experiment run id {run_id}")

    self.checkpoints_dir_path = get_checkpoints_dir_path(ckpt_root_dir=self.ckpt_root_dir, experiment_name=self.experiment_name, run_id=run_id)
    logger.debug(f"Checkpoints directory {self.checkpoints_dir_path}")

    os.makedirs(self.checkpoints_dir_path, exist_ok=True)

    from super_gradients.training.utils.quantization.fix_pytorch_quantization_modules import patch_pytorch_quantization_modules_if_needed

    patch_pytorch_quantization_modules_if_needed()

    if quantization_params is None:
        quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
        logger.info(f"Using default quantization params: {quantization_params}")

    model = unwrap_model(model)  # Unwrap model in case it is wrapped with DataParallel or DistributedDataParallel

    selective_quantizer_params = get_param(quantization_params, "selective_quantizer_params")
    calib_params = get_param(quantization_params, "calib_params")
    model.to(device_config.device)
    # QUANTIZE MODEL
    model.eval()
    fuse_repvgg_blocks_residual_branches(model)
    q_util = SelectiveQuantizer(
        default_quant_modules_calibrator_weights=get_param(selective_quantizer_params, "calibrator_w"),
        default_quant_modules_calibrator_inputs=get_param(selective_quantizer_params, "calibrator_i"),
        default_per_channel_quant_weights=get_param(selective_quantizer_params, "per_channel"),
        default_learn_amax=get_param(selective_quantizer_params, "learn_amax"),
        verbose=get_param(calib_params, "verbose"),
    )
    q_util.register_skip_quantization(layer_names=get_param(selective_quantizer_params, "skip_modules"))
    q_util.quantize_module(model)
    # CALIBRATE MODEL
    logger.info("Calibrating model...")
    calibrator = QuantizationCalibrator(
        verbose=get_param(calib_params, "verbose"),
        torch_hist=True,
    )
    calibrator.calibrate_model(
        model,
        method=get_param(calib_params, "histogram_calib_method"),
        calib_data_loader=calib_loader,
        num_calib_batches=get_param(calib_params, "num_calib_batches") or len(calib_loader),
        percentile=get_param(calib_params, "percentile", 99.99),
    )
    calibrator.reset_calibrators(model)  # release memory taken by calibrators
    # VALIDATE PTQ MODEL AND PRINT SUMMARY
    logger.info("Validating PTQ model...")
    valid_metrics_dict = self.test(model=model, test_loader=valid_loader, test_metrics_list=valid_metrics_list)
    results = ["PTQ Model Validation Results"]
    results += [f"   - {metric:10}: {value}" for metric, value in valid_metrics_dict.items()]
    logger.info("\n".join(results))

    input_shape = next(iter(valid_loader))[0].shape
    input_shape_with_batch_size_one = tuple([1] + list(input_shape[1:]))
    qdq_onnx_path = os.path.join(
        self.checkpoints_dir_path, f"{self.experiment_name}_{'x'.join((str(x) for x in input_shape_with_batch_size_one))}_ptq.onnx"
    )
    logger.debug(f"Output ONNX file path {qdq_onnx_path}")

    if isinstance(model, ExportableObjectDetectionModel):
        model: ExportableObjectDetectionModel = typing.cast(ExportableObjectDetectionModel, model)
        export_result = model.export(
            output=qdq_onnx_path,
            quantization_mode=ExportQuantizationMode.INT8,
            input_image_shape=(input_shape_with_batch_size_one[2], input_shape_with_batch_size_one[3]),
            preprocessing=False,
            postprocessing=True,
        )
        logger.info(repr(export_result))
    else:
        # TODO: modify SG's convert_to_onnx for quantized models and use it instead
        export_quantized_module_to_onnx(
            model=model.cpu(),
            onnx_filename=qdq_onnx_path,
            input_shape=input_shape_with_batch_size_one,
            input_size=input_shape_with_batch_size_one,
            train=False,
            deepcopy_model=deepcopy_model_for_export,
        )

    return valid_metrics_dict

qat(calib_loader, model, valid_loader, train_loader, training_params=None, quantization_params=None, additional_qat_configs_to_log=None, valid_metrics_list=None)

Performs post-training quantization (PTQ), and then quantization-aware training (QAT). Exports the ONNX models (ckpt_best.pth of QAT and the calibrated model) to the checkpoints directory.

Parameters:

Name Type Description Default
calib_loader DataLoader

DataLoader, data loader for calibration.

required
model torch.nn.Module

torch.nn.Module, Model to perform QAT/PTQ on. When None, will try to use the network from previous self.train call(that is, if there was one - will try to use self.ema_model.ema if EMA was used, otherwise self.net)

required
valid_loader DataLoader

DataLoader, data loader for validation. Used both for validating the calibrated model after PTQ and during QAT. When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

required
train_loader DataLoader

DataLoader, data loader for QA training, can be ignored when quantization_params["ptq_only"]=True (default=None).

required
quantization_params Mapping

Mapping, with the following entries:defaults- selective_quantizer_params: calibrator_w: "max" # calibrator type for weights, acceptable types are ["max", "histogram"] calibrator_i: "histogram" # calibrator type for inputs acceptable types are ["max", "histogram"] per_channel: True # per-channel quantization of weights, activations stay per-tensor by default learn_amax: False # enable learnable amax in all TensorQuantizers using straight-through estimator skip_modules: # optional list of module names (strings) to skip from quantization calib_params: histogram_calib_method: "percentile" # calibration method for all "histogram" calibrators, # acceptable types are ["percentile", "entropy", mse"], # "max" calibrators always use "max" percentile: 99.99 # percentile for all histogram calibrators with method "percentile", # other calibrators are not affected num_calib_batches: # number of batches to use for calibration, if None, 512 / batch_size will be used verbose: False # if calibrator should be verbose When None, the above default config is used (default=None)

None
training_params Mapping

Mapping, training hyper parameters for QAT, same as in super.train(...). When None, will try to use self.training_params which is set in previous self.train(..) call (default=None).

None
additional_qat_configs_to_log Dict

Dict, Optional dictionary containing configs that will be added to the QA training's sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.

None
valid_metrics_list List[Metric]

(list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model. When None, the validation metrics from training_params are used). (default=None).

None

Returns:

Type Description

Validation results of the QAT model in case quantization_params['ptq_only']=False and of the PTQ model otherwise.

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
def qat(
    self,
    calib_loader: DataLoader,
    model: torch.nn.Module,
    valid_loader: DataLoader,
    train_loader: DataLoader,
    training_params: Mapping = None,
    quantization_params: Mapping = None,
    additional_qat_configs_to_log: Dict = None,
    valid_metrics_list: List[Metric] = None,
):
    """
    Performs post-training quantization (PTQ), and then quantization-aware training (QAT).
    Exports the ONNX models (ckpt_best.pth of QAT and the calibrated model) to the checkpoints directory.

    :param calib_loader: DataLoader, data loader for calibration.

    :param model: torch.nn.Module, Model to perform QAT/PTQ on. When None, will try to use the network from
    previous self.train call(that is, if there was one - will try to use self.ema_model.ema if EMA was used,
    otherwise self.net)


    :param valid_loader: DataLoader, data loader for validation. Used both for validating the calibrated model after PTQ and during QAT.
        When None, will try to use self.valid_loader if it was set in previous self.train(..) call (default=None).

    :param train_loader: DataLoader, data loader for QA training, can be ignored when quantization_params["ptq_only"]=True (default=None).

    :param quantization_params: Mapping, with the following entries:defaults-
        selective_quantizer_params:
          calibrator_w: "max"        # calibrator type for weights, acceptable types are ["max", "histogram"]
          calibrator_i: "histogram"  # calibrator type for inputs acceptable types are ["max", "histogram"]
          per_channel: True          # per-channel quantization of weights, activations stay per-tensor by default
          learn_amax: False          # enable learnable amax in all TensorQuantizers using straight-through estimator
          skip_modules:              # optional list of module names (strings) to skip from quantization

        calib_params:
          histogram_calib_method: "percentile"  # calibration method for all "histogram" calibrators,
                                                            # acceptable types are ["percentile", "entropy", mse"],
                                                            # "max" calibrators always use "max"

          percentile: 99.99                     # percentile for all histogram calibrators with method "percentile",
                                                # other calibrators are not affected

          num_calib_batches:                    # number of batches to use for calibration, if None, 512 / batch_size will be used
          verbose: False                        # if calibrator should be verbose


          When None, the above default config is used (default=None)


    :param training_params: Mapping, training hyper parameters for QAT, same as in super.train(...). When None, will try to use self.training_params
     which is set in previous self.train(..) call (default=None).

    :param additional_qat_configs_to_log: Dict, Optional dictionary containing configs that will be added to the QA training's
     sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.

    :param valid_metrics_list:  (list(torchmetrics.Metric)) metrics list for evaluation of the calibrated model.
    When None, the validation metrics from training_params are used). (default=None).

    :return: Validation results of the QAT model in case quantization_params['ptq_only']=False and of the PTQ
    model otherwise.
    """

    if quantization_params is None:
        quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
        logger.info(f"Using default quantization params: {quantization_params}")
    valid_metrics_list = valid_metrics_list or get_param(training_params, "valid_metrics_list")

    _ = self.ptq(
        calib_loader=calib_loader,
        model=model,
        quantization_params=quantization_params,
        valid_loader=valid_loader,
        valid_metrics_list=valid_metrics_list,
        deepcopy_model_for_export=True,
    )
    # TRAIN
    model.train()
    torch.cuda.empty_cache()

    res = self.train(
        model=model,
        train_loader=train_loader,
        valid_loader=valid_loader,
        training_params=training_params,
        additional_configs_to_log=additional_qat_configs_to_log,
    )

    # EXPORT QUANTIZED MODEL TO ONNX
    input_shape = next(iter(valid_loader))[0].shape
    os.makedirs(self.checkpoints_dir_path, exist_ok=True)
    qdq_onnx_path = os.path.join(self.checkpoints_dir_path, f"{self.experiment_name}_{'x'.join((str(x) for x in input_shape))}_qat.onnx")

    # TODO: modify SG's convert_to_onnx for quantized models and use it instead
    export_quantized_module_to_onnx(
        model=model.cpu(),
        onnx_filename=qdq_onnx_path,
        input_shape=input_shape,
        input_size=input_shape,
        train=False,
    )
    logger.info(f"Exported QAT ONNX to {qdq_onnx_path}")
    return res

quantize_from_config(cfg) classmethod

Perform quantization aware training (QAT) according to a recipe configuration.

This method will instantiate all the objects specified in the recipe, build and quantize the model, and calibrate the quantized model. The resulting quantized model and the output of the trainer.train() method will be returned.

The quantized model will be exported to ONNX along with other checkpoints.

The call to self.quantize (see docs in the next method) is done with the created train_loader and valid_loader. If no calibration data loader is passed through cfg.calib_loader, a train data laoder with the validation transforms is used for calibration.

Parameters:

Name Type Description Default
cfg Union[DictConfig, dict]

The parsed DictConfig object from yaml recipe files or a dictionary.

required

Returns:

Type Description
Tuple[nn.Module, Tuple]

A tuple containing the quantized model and the output of trainer.train() method.

Raises:

Type Description
ValueError

If the recipe does not have the required key quantization_params or checkpoint_params.checkpoint_path in it.

NotImplementedError

If the recipe requests multiple GPUs or num_gpus is not equal to 1.

ImportError

If pytorch-quantization import was unsuccessful

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
@classmethod
def quantize_from_config(cls, cfg: Union[DictConfig, dict]) -> Tuple[nn.Module, Tuple]:
    """
    Perform quantization aware training (QAT) according to a recipe configuration.

    This method will instantiate all the objects specified in the recipe, build and quantize the model,
    and calibrate the quantized model. The resulting quantized model and the output of the trainer.train()
    method will be returned.

    The quantized model will be exported to ONNX along with other checkpoints.

    The call to self.quantize (see docs in the next method) is done with the created
     train_loader and valid_loader. If no calibration data loader is passed through cfg.calib_loader,
     a train data laoder with the validation transforms is used for calibration.

    :param cfg: The parsed DictConfig object from yaml recipe files or a dictionary.
    :return: A tuple containing the quantized model and the output of trainer.train() method.

    :raises ValueError: If the recipe does not have the required key `quantization_params` or
    `checkpoint_params.checkpoint_path` in it.
    :raises NotImplementedError: If the recipe requests multiple GPUs or num_gpus is not equal to 1.
    :raises ImportError: If pytorch-quantization import was unsuccessful

    """
    if _imported_pytorch_quantization_failure is not None:
        raise _imported_pytorch_quantization_failure

    # INSTANTIATE ALL OBJECTS IN CFG
    cfg = hydra.utils.instantiate(cfg)

    # TRIGGER CFG MODIFYING CALLBACKS
    cfg = cls._trigger_cfg_modifying_callbacks(cfg)

    quantization_params = get_param(cfg, "quantization_params")

    if quantization_params is None:
        logger.warning("Your recipe does not include quantization_params. Using default quantization params.")
        quantization_params = load_recipe("quantization_params/default_quantization_params").quantization_params
        cfg.quantization_params = quantization_params

    if get_param(cfg.checkpoint_params, "checkpoint_path") is None and get_param(cfg.checkpoint_params, "pretrained_weights") is None:
        raise ValueError("Starting checkpoint / pretrained weights are a must for QAT finetuning.")

    num_gpus = core_utils.get_param(cfg, "num_gpus")
    multi_gpu = core_utils.get_param(cfg, "multi_gpu")
    device = core_utils.get_param(cfg, "device")
    if num_gpus != 1:
        raise NotImplementedError(
            f"Recipe requests multi_gpu={cfg.multi_gpu} and num_gpus={cfg.num_gpus}. QAT is proven to work correctly only with multi_gpu=OFF and num_gpus=1"
        )

    setup_device(device=device, multi_gpu=multi_gpu, num_gpus=num_gpus)

    # INSTANTIATE DATA LOADERS
    train_dataloader = dataloaders.get(
        name=get_param(cfg, "train_dataloader"),
        dataset_params=copy.deepcopy(cfg.dataset_params.train_dataset_params),
        dataloader_params=copy.deepcopy(cfg.dataset_params.train_dataloader_params),
    )

    val_dataloader = dataloaders.get(
        name=get_param(cfg, "val_dataloader"),
        dataset_params=copy.deepcopy(cfg.dataset_params.val_dataset_params),
        dataloader_params=copy.deepcopy(cfg.dataset_params.val_dataloader_params),
    )

    if "calib_dataloader" in cfg:
        calib_dataloader_name = get_param(cfg, "calib_dataloader")
        calib_dataloader_params = copy.deepcopy(cfg.dataset_params.calib_dataloader_params)
        calib_dataset_params = copy.deepcopy(cfg.dataset_params.calib_dataset_params)
    else:
        calib_dataloader_name = get_param(cfg, "train_dataloader")
        calib_dataloader_params = copy.deepcopy(cfg.dataset_params.train_dataloader_params)
        calib_dataset_params = copy.deepcopy(cfg.dataset_params.train_dataset_params)

        # if we use whole dataloader for calibration, don't shuffle it
        # HistogramCalibrator collection routine is sensitive to order of batches and produces slightly different results
        # if we use several batches, we don't want it to be from one class if it's sequential in dataloader
        # model is in eval mode, so BNs will not be affected
        calib_dataloader_params.shuffle = cfg.quantization_params.calib_params.num_calib_batches is not None
        # we don't need training transforms during calibration, distribution of activations will be skewed
        calib_dataset_params.transforms = cfg.dataset_params.val_dataset_params.transforms

    calib_dataloader = dataloaders.get(
        name=calib_dataloader_name,
        dataset_params=calib_dataset_params,
        dataloader_params=calib_dataloader_params,
    )

    # BUILD MODEL
    model = models.get(
        model_name=cfg.arch_params.get("model_name", None) or cfg.architecture,
        num_classes=cfg.get("num_classes", None) or cfg.arch_params.num_classes,
        arch_params=cfg.arch_params,
        strict_load=cfg.checkpoint_params.strict_load,
        pretrained_weights=cfg.checkpoint_params.pretrained_weights,
        checkpoint_path=cfg.checkpoint_params.checkpoint_path,
        load_backbone=False,
    )

    recipe_logged_cfg = {"recipe_config": OmegaConf.to_container(cfg, resolve=True)}
    trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=get_param(cfg, "ckpt_root_dir"))

    if quantization_params.ptq_only:
        res = trainer.ptq(
            calib_loader=calib_dataloader,
            model=model,
            quantization_params=quantization_params,
            valid_loader=val_dataloader,
            valid_metrics_list=cfg.training_hyperparams.valid_metrics_list,
        )
    else:
        res = trainer.qat(
            model=model,
            quantization_params=quantization_params,
            calib_loader=calib_dataloader,
            valid_loader=val_dataloader,
            train_loader=train_dataloader,
            training_params=cfg.training_hyperparams,
            additional_qat_configs_to_log=recipe_logged_cfg,
        )

    return model, res

resume_experiment(experiment_name, ckpt_root_dir=None, run_id=None) classmethod

Resume a training that was run using our recipes.

Parameters:

Name Type Description Default
experiment_name str

Name of the experiment to resume

required
ckpt_root_dir Optional[str]

Directory including the checkpoints

None
run_id Optional[str]

Optional. Run id of the experiment. If None, the most recent run will be loaded.

None

Returns:

Type Description
Tuple[nn.Module, Tuple]

The config that was used for that experiment

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@classmethod
def resume_experiment(cls, experiment_name: str, ckpt_root_dir: Optional[str] = None, run_id: Optional[str] = None) -> Tuple[nn.Module, Tuple]:
    """
    Resume a training that was run using our recipes.

    :param experiment_name:     Name of the experiment to resume
    :param ckpt_root_dir:       Directory including the checkpoints
    :param run_id:              Optional. Run id of the experiment. If None, the most recent run will be loaded.
    :return:                    The config that was used for that experiment
    """
    logger.info("Resume training using the checkpoint recipe, ignoring the current recipe")

    if run_id is None:
        run_id = get_latest_run_id(checkpoints_root_dir=ckpt_root_dir, experiment_name=experiment_name)

    # Load the latest config
    cfg = load_experiment_cfg(ckpt_root_dir=ckpt_root_dir, experiment_name=experiment_name, run_id=run_id)

    add_params_to_cfg(cfg, params=["training_hyperparams.resume=True"])
    if run_id:
        add_params_to_cfg(cfg, params=[f"training_hyperparams.run_id={run_id}"])
    return cls.train_from_config(cfg)

set_ckpt_best_name(ckpt_best_name)

Setter for best checkpoint filename.

Parameters:

Name Type Description Default
ckpt_best_name

str, value to set ckpt_best_name

required
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2214
2215
2216
2217
2218
2219
2220
def set_ckpt_best_name(self, ckpt_best_name):
    """
    Setter for best checkpoint filename.

    :param ckpt_best_name: str, value to set ckpt_best_name
    """
    self.ckpt_best_name = ckpt_best_name

set_ema(val)

Setter for self.ema

Parameters:

Name Type Description Default
val bool

bool, value to set ema

required
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2222
2223
2224
2225
2226
2227
2228
def set_ema(self, val: bool):
    """
    Setter for self.ema

    :param val: bool, value to set ema
    """
    self.ema = val

set_net(net)

Setter for network.

Parameters:

Name Type Description Default
net torch.nn.Module

torch.nn.Module, value to set net

required

Returns:

Type Description
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
2205
2206
2207
2208
2209
2210
2211
2212
def set_net(self, net: torch.nn.Module):
    """
    Setter for network.

    :param net: torch.nn.Module, value to set net
    :return:
    """
    self.net = net

test(model=None, test_loader=None, loss=None, silent_mode=False, test_metrics_list=None, loss_logging_items_names=None, metrics_progress_verbose=False, test_phase_callbacks=None, use_ema_net=True)

Evaluates the model on given dataloader and metrics.

Parameters:

Name Type Description Default
model nn.Module

model to perfrom test on. When none is given, will try to use self.net (defalut=None).

None
test_loader torch.utils.data.DataLoader

dataloader to perform test on.

None
test_metrics_list

(list(torchmetrics.Metric)) metrics list for evaluation.

None
silent_mode bool

(bool) controls verbosity

False
metrics_progress_verbose

(bool) controls the verbosity of metrics progress (default=False). Slows down the program.

False

Returns:

Type Description
Dict[str, float]

results tuple (tuple) containing the loss items and metric values. All of the above args will override Trainer's corresponding attribute when not equal to None. Then evaluation is ran on self.test_loader with self.test_metrics.

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
def test(
    self,
    model: nn.Module = None,
    test_loader: torch.utils.data.DataLoader = None,
    loss: torch.nn.modules.loss._Loss = None,
    silent_mode: bool = False,
    test_metrics_list=None,
    loss_logging_items_names=None,
    metrics_progress_verbose=False,
    test_phase_callbacks=None,
    use_ema_net=True,
) -> Dict[str, float]:
    """
    Evaluates the model on given dataloader and metrics.
    :param model: model to perfrom test on. When none is given, will try to use self.net (defalut=None).
    :param test_loader: dataloader to perform test on.
    :param test_metrics_list: (list(torchmetrics.Metric)) metrics list for evaluation.
    :param silent_mode: (bool) controls verbosity
    :param metrics_progress_verbose: (bool) controls the verbosity of metrics progress (default=False). Slows down the program.
    :param use_ema_net (bool) whether to perform test on self.ema_model.ema (when self.ema_model.ema exists,
        otherwise self.net will be tested) (default=True)
    :return: results tuple (tuple) containing the loss items and metric values.

    All of the above args will override Trainer's corresponding attribute when not equal to None. Then evaluation
     is ran on self.test_loader with self.test_metrics.
    """

    self.net = model or self.net

    # IN CASE TRAINING WAS PERFROMED BEFORE TEST- MAKE SURE TO TEST THE EMA MODEL (UNLESS SPECIFIED OTHERWISE BY
    # use_ema_net)

    if use_ema_net and self.ema_model is not None:
        keep_model = self.net
        self.net = self.ema_model.ema

    self._prep_for_test(
        test_loader=test_loader,
        loss=loss,
        test_metrics_list=test_metrics_list,
        loss_logging_items_names=loss_logging_items_names,
        test_phase_callbacks=test_phase_callbacks,
    )

    context = PhaseContext(
        criterion=self.criterion,
        device=self.device,
        sg_logger=self.sg_logger,
    )
    if test_metrics_list:
        context.update_context(test_metrics=self.test_metrics)
    if test_phase_callbacks:
        context.update_context(net=self.net)
        context.update_context(test_loader=test_loader)

    self.phase_callback_handler.on_test_loader_start(context)
    test_results = self.evaluate(
        data_loader=test_loader,
        metrics=self.test_metrics,
        evaluation_type=EvaluationType.TEST,
        silent_mode=silent_mode,
        metrics_progress_verbose=metrics_progress_verbose,
    )
    self.phase_callback_handler.on_test_loader_end(context)

    # SWITCH BACK BETWEEN NETS SO AN ADDITIONAL TRAINING CAN BE DONE AFTER TEST
    if use_ema_net and self.ema_model is not None:
        self.net = keep_model

    self._first_backward = True

    return test_results

train(model, training_params=None, train_loader=None, valid_loader=None, test_loaders=None, additional_configs_to_log=None)

train - Trains the Model

IMPORTANT NOTE: Additional batch parameters can be added as a third item (optional) if a tuple is returned by the data loaders, as dictionary. The phase context will hold the additional items, under an attribute with the same name as the key in this dictionary. Then such items can be accessed through phase callbacks.

:param additional_configs_to_log: Dict, dictionary containing configs that will be added to the training's
    sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.
:param model: torch.nn.Module, model to train.

:param train_loader: Dataloader for train set.
:param valid_loader: Dataloader for validation.
:param test_loaders: Dictionary of test loaders. The key will be used as the dataset name.
:param training_params:

    - `resume` : bool (default=False)

        Whether to continue training from ckpt with the same experiment name
         (i.e resume from CKPT_ROOT_DIR/EXPERIMENT_NAME/CKPT_NAME)

    - `run_id` : (Optional) int (default=None)

        ID of run to resume from the same experiment. When set, the training will be resumed from the checkpoint in the specified run id.

    - `ckpt_name` : str (default=ckpt_latest.pth)

        The checkpoint (.pth file) filename in CKPT_ROOT_DIR/EXPERIMENT_NAME/ to use when resume=True and
         resume_path=None

    - `resume_path`: str (default=None)

        Explicit checkpoint path (.pth file) to use to resume training.

    - `max_epochs` : int

        Number of epochs to run training.

    - `lr_updates` : list(int)

        List of fixed epoch numbers to perform learning rate updates when `lr_mode='StepLRScheduler'`.

    - `lr_decay_factor` : float

        Decay factor to apply to the learning rate at each update when `lr_mode='StepLRScheduler'`.


    -  `lr_mode` : Union[str, Mapping],

        When str:

        Learning rate scheduling policy, one of ['StepLRScheduler','PolyLRScheduler','CosineLRScheduler','FunctionLRScheduler'].

        'StepLRScheduler' refers to constant updates at epoch numbers passed through `lr_updates`.
            Each update decays the learning rate by `lr_decay_factor`.

        'CosineLRScheduler' refers to the Cosine Anealing policy as mentioned in https://arxiv.org/abs/1608.03983.
          The final learning rate ratio is controlled by `cosine_final_lr_ratio` training parameter.

        'PolyLRScheduler' refers to the polynomial decrease:
            in each epoch iteration `self.lr = self.initial_lr * pow((1.0 - (current_iter / max_iter)), 0.9)`

        'FunctionLRScheduler' refers to a user-defined learning rate scheduling function, that is passed through `lr_schedule_function`.



        When Mapping, refers to a torch.optim.lr_scheduler._LRScheduler, following the below API:

            lr_mode = {LR_SCHEDULER_CLASS_NAME: {**LR_SCHEDULER_KWARGS, "phase": XXX, "metric_name": XXX)

            Where "phase" (of Phase type) controls when to call torch.optim.lr_scheduler._LRScheduler.step().

            The "metric_name" refers to the metric to watch (See docs for "metric_to_watch" in train(...)
             https://docs.deci.ai/super-gradients/docstring/training/sg_trainer.html) when using
              ReduceLROnPlateau. In any other case this kwarg is ignored.

            **LR_SCHEDULER_KWARGS are simply passed to the torch scheduler's __init__.


            For example:
                lr_mode = {"StepLR": {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}}
                is equivalent to following training code:

                    from torch.optim.lr_scheduler import StepLR
                    ...
                    optimizer = ....
                    scheduler = StepLR(optimizer=optimizer, gamma=0.1, step_size=1)

                    for epoch in num_epochs:
                        train_epoch(...)
                        scheduler.step()
                        ....



    - `lr_schedule_function` : Union[callable,None]

        Learning rate scheduling function to be used when `lr_mode` is 'FunctionLRScheduler'.

    - `warmup_mode`: Union[str, Type[LRCallbackBase], None]

        If not None, define how the learning rate will be increased during the warmup phase.
        Currently, only 'warmup_linear_epoch' and `warmup_linear_step` modes are supported.

    - `lr_warmup_epochs` : int (default=0)

        Number of epochs for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
        Relevant for `warmup_mode=warmup_linear_epoch`.
        When lr_warmup_epochs > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
        once per epoch.

    - `lr_warmup_steps` : int (default=0)

        Number of steps for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
        Relevant for `warmup_mode=warmup_linear_step`.
        When lr_warmup_steps > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
        for a total number of steps according to formula: min(lr_warmup_steps, len(train_loader)).
        The capping is done to avoid interference of warmup with epoch-based schedulers.

    - `cosine_final_lr_ratio` : float (default=0.01)
        Final learning rate ratio (only relevant when `lr_mode`='CosineLRScheduler'). The cosine starts from initial_lr and reaches
         initial_lr * cosine_final_lr_ratio in last epoch

    - `inital_lr` : float

        Initial learning rate.

    - `loss` : Union[nn.module, str]

        Loss function for training.
        One of SuperGradient's built in options:

            - CrossEntropyLoss,
            - MSELoss,
            - RSquaredLoss,
            - YoLoV3DetectionLoss,
            - ShelfNetOHEMLoss,
            - ShelfNetSemanticEncodingLoss,
            - SSDLoss,


        or user defined nn.module loss function.

        IMPORTANT: forward(...) should return a (loss, loss_items) tuple where loss is the tensor used
        for backprop (i.e what your original loss function returns), and loss_items should be a tensor of
        shape (n_items), of values computed during the forward pass which we desire to log over the
        entire epoch. For example- the loss itself should always be logged. Another example is a scenario
        where the computed loss is the sum of a few components we would like to log- these entries in
        loss_items).

        IMPORTANT:When dealing with external loss classes, to logg/monitor the loss_items as described
        above by specific string name:

        Set a "component_names" property in the loss class, whos instance is passed through train_params,
         to be a list of strings, of length n_items who's ith element is the name of the ith entry in loss_items.
         Then each item will be logged, rendered on tensorboard and "watched" (i.e saving model checkpoints
         according to it) under <LOSS_CLASS.__name__>"/"<COMPONENT_NAME>. If a single item is returned rather then a
         tuple, it would be logged under <LOSS_CLASS.__name__>. When there is no such attributed, the items
         will be named <LOSS_CLASS.__name__>"/"Loss_"<IDX> according to the length of loss_items

        For example:
            class MyLoss(_Loss):
                ...
                def forward(self, inputs, targets):
                    ...
                    total_loss = comp1 + comp2
                    loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                    return total_loss, loss_items
                ...
                @property
                def component_names(self):
                    return ["total_loss", "my_1st_component", "my_2nd_component"]

        Trainer.train(...
                        train_params={"loss":MyLoss(),
                                        ...
                                        "metric_to_watch": "MyLoss/my_1st_component"}

            This will write to log and monitor MyLoss/total_loss, MyLoss/my_1st_component,
             MyLoss/my_2nd_component.

       For example:
            class MyLoss2(_Loss):
                ...
                def forward(self, inputs, targets):
                    ...
                    total_loss = comp1 + comp2
                    loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                    return total_loss, loss_items
                ...

        Trainer.train(...
                        train_params={"loss":MyLoss(),
                                        ...
                                        "metric_to_watch": "MyLoss2/loss_0"}

            This will write to log and monitor MyLoss2/loss_0, MyLoss2/loss_1, MyLoss2/loss_2
            as they have been named by their positional index in loss_items.

        Since running logs will save the loss_items in some internal state, it is recommended that
        loss_items are detached from their computational graph for memory efficiency.

    - `optimizer` : Union[str, torch.optim.Optimizer]

        Optimization algorithm. One of ['Adam','SGD','RMSProp'] corresponding to the torch.optim
        optimzers implementations, or any object that implements torch.optim.Optimizer.

    - `criterion_params` : dict

        Loss function parameters.

    - `optimizer_params` : dict
        When `optimizer` is one of ['Adam','SGD','RMSProp'], it will be initialized with optimizer_params.

        (see https://pytorch.org/docs/stable/optim.html for the full list of
        parameters for each optimizer).

    - `train_metrics_list` : list(torchmetrics.Metric)

        Metrics to log during training. For more information on torchmetrics see
        https://torchmetrics.rtfd.io/en/latest/.


    - `valid_metrics_list` : list(torchmetrics.Metric)

        Metrics to log during validation/testing. For more information on torchmetrics see
        https://torchmetrics.rtfd.io/en/latest/.


    - `loss_logging_items_names` : list(str)

        The list of names/titles for the outputs returned from the loss functions forward pass (reminder-
        the loss function should return the tuple (loss, loss_items)). These names will be used for
        logging their values.

    - `metric_to_watch` : str (default="Accuracy")

        will be the metric which the model checkpoint will be saved according to, and can be set to any
        of the following:

            a metric name (str) of one of the metric objects from the valid_metrics_list

            a "metric_name" if some metric in valid_metrics_list has an attribute component_names which
            is a list referring to the names of each entry in the output metric (torch tensor of size n)

            one of "loss_logging_items_names" i.e which will correspond to an item returned during the
            loss function's forward pass (see loss docs abov).

        At the end of each epoch, if a new best metric_to_watch value is achieved, the models checkpoint
        is saved in YOUR_PYTHON_PATH/checkpoints/ckpt_best.pth

    - `greater_metric_to_watch_is_better` : bool

        When choosing a model's checkpoint to be saved, the best achieved model is the one that maximizes the
         metric_to_watch when this parameter is set to True, and a one that minimizes it otherwise.

    - `ema` : bool (default=False)

        Whether to use Model Exponential Moving Average (see
        https://github.com/rwightman/pytorch-image-models ema implementation)

    - `batch_accumulate` : int (default=1)

        Number of batches to accumulate before every backward pass.

    - `ema_params` : dict

        Parameters for the ema model.

    - `zero_weight_decay_on_bias_and_bn` : bool (default=False)

        Whether to apply weight decay on batch normalization parameters or not (ignored when the passed
        optimizer has already been initialized).


    - `load_opt_params` : bool (default=True)

        Whether to load the optimizers parameters as well when loading a model's checkpoint.

    - `run_validation_freq` : int (default=1)

        The frequency in which validation is performed during training (i.e the validation is ran every
         `run_validation_freq` epochs). Also applies to test set if you provided one.

    - `run_test_freq` : int (default=1)

        The frequency in which test is performed during training (i.e the test is ran every
         `run_test_freq` epochs). Only applies if you provided a test set.

    - `save_model` : bool (default=True)

        Whether to save the model checkpoints.

    - `silent_mode` : bool

        Silents the print outs.

    - `mixed_precision` : bool

        Whether to use mixed precision or not.

    - `save_ckpt_epoch_list` : list(int) (default=[])

        List of fixed epoch indices the user wishes to save checkpoints in.

    - `average_best_models` : bool (default=False)

        If set, a snapshot dictionary file and the average model will be saved / updated at every epoch
        and evaluated only when training is completed. The snapshot file will only be deleted upon
        completing the training. The snapshot dict will be managed on cpu.

    - `precise_bn` : bool (default=False)

        Whether to use precise_bn calculation during the training.

    - `precise_bn_batch_size` : int (default=None)

        The effective batch size we want to calculate the batchnorm on. For example, if we are training a model
        on 8 gpus, with a batch of 128 on each gpu, a good rule of thumb would be to give it 8192
        (ie: effective_batch_size * num_gpus = batch_per_gpu * num_gpus * num_gpus).
        If precise_bn_batch_size is not provided in the training_params, the latter heuristic will be taken.

    - `seed` : int (default=42)

        Random seed to be set for torch, numpy, and random. When using DDP each process will have it's seed
        set to seed + rank.


    - `log_installed_packages` : bool (default=False)

        When set, the list of all installed packages (and their versions) will be written to the tensorboard
         and logfile (useful when trying to reproduce results).

    - `dataset_statistics` : bool (default=False)

        Enable a statistic analysis of the dataset. If set to True the dataset will be analyzed and a report
        will be added to the tensorboard along with some sample images from the dataset. Currently only
        detection datasets are supported for analysis.

    -  `sg_logger` : Union[AbstractSGLogger, str] (defauls=base_sg_logger)

        Define the SGLogger object for this training process. The SGLogger handles all disk writes, logs, TensorBoard, remote logging
        and remote storage. By overriding the default base_sg_logger, you can change the storage location, support external monitoring and logging
        or support remote storage.

    -   `sg_logger_params` : dict

        SGLogger parameters

    -   `clip_grad_norm` : float

        Defines a maximal L2 norm of the gradients. Values which exceed the given value will be clipped

    -   `lr_cooldown_epochs` : int (default=0)

        Number of epochs to cooldown LR (i.e the last epoch from scheduling view point=max_epochs-cooldown).

    -   `pre_prediction_callback` : Callable (default=None)

         When not None, this callback will be applied to images and targets, and returning them to be used
          for the forward pass, and further computations. Args for this callable should be in the order
          (inputs, targets, batch_idx) returning modified_inputs, modified_targets

    -   `ckpt_best_name` : str (default='ckpt_best.pth')

        The best checkpoint (according to metric_to_watch) will be saved under this filename in the checkpoints directory.

    -   `max_train_batches`: int, for debug- when not None- will break out of inner train loop (i.e iterating over
          train_loader) when reaching this number of batches. Usefull for debugging (default=None).

    -   `max_valid_batches`: int, for debug- when not None- will break out of inner valid loop (i.e iterating over
          valid_loader) when reaching this number of batches. Usefull for debugging (default=None).

    -   `resume_from_remote_sg_logger`: bool (default=False),  bool (default=False), When true, ckpt_name (checkpoint filename
           to resume i.e ckpt_latest.pth bydefault) will be downloaded into the experiment checkpoints directory
           prior to loading weights, then training is resumed from that checkpoint. The source is unique to
           every logger, and currently supported for WandB loggers only.

           IMPORTANT: Only works for experiments that were ran with sg_logger_params.save_checkpoints_remote=True.
           IMPORTANT: For WandB loggers, one must also pass the run id through the wandb_id arg in sg_logger_params.

Returns:

Type Description
Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
def train(
    self,
    model: nn.Module,
    training_params: dict = None,
    train_loader: DataLoader = None,
    valid_loader: DataLoader = None,
    test_loaders: Dict[str, DataLoader] = None,
    additional_configs_to_log: Dict = None,
):  # noqa: C901
    """

    train - Trains the Model

    IMPORTANT NOTE: Additional batch parameters can be added as a third item (optional) if a tuple is returned by
      the data loaders, as dictionary. The phase context will hold the additional items, under an attribute with
      the same name as the key in this dictionary. Then such items can be accessed through phase callbacks.

        :param additional_configs_to_log: Dict, dictionary containing configs that will be added to the training's
            sg_logger. Format should be {"Config_title_1": {...}, "Config_title_2":{..}}.
        :param model: torch.nn.Module, model to train.

        :param train_loader: Dataloader for train set.
        :param valid_loader: Dataloader for validation.
        :param test_loaders: Dictionary of test loaders. The key will be used as the dataset name.
        :param training_params:

            - `resume` : bool (default=False)

                Whether to continue training from ckpt with the same experiment name
                 (i.e resume from CKPT_ROOT_DIR/EXPERIMENT_NAME/CKPT_NAME)

            - `run_id` : (Optional) int (default=None)

                ID of run to resume from the same experiment. When set, the training will be resumed from the checkpoint in the specified run id.

            - `ckpt_name` : str (default=ckpt_latest.pth)

                The checkpoint (.pth file) filename in CKPT_ROOT_DIR/EXPERIMENT_NAME/ to use when resume=True and
                 resume_path=None

            - `resume_path`: str (default=None)

                Explicit checkpoint path (.pth file) to use to resume training.

            - `max_epochs` : int

                Number of epochs to run training.

            - `lr_updates` : list(int)

                List of fixed epoch numbers to perform learning rate updates when `lr_mode='StepLRScheduler'`.

            - `lr_decay_factor` : float

                Decay factor to apply to the learning rate at each update when `lr_mode='StepLRScheduler'`.


            -  `lr_mode` : Union[str, Mapping],

                When str:

                Learning rate scheduling policy, one of ['StepLRScheduler','PolyLRScheduler','CosineLRScheduler','FunctionLRScheduler'].

                'StepLRScheduler' refers to constant updates at epoch numbers passed through `lr_updates`.
                    Each update decays the learning rate by `lr_decay_factor`.

                'CosineLRScheduler' refers to the Cosine Anealing policy as mentioned in https://arxiv.org/abs/1608.03983.
                  The final learning rate ratio is controlled by `cosine_final_lr_ratio` training parameter.

                'PolyLRScheduler' refers to the polynomial decrease:
                    in each epoch iteration `self.lr = self.initial_lr * pow((1.0 - (current_iter / max_iter)), 0.9)`

                'FunctionLRScheduler' refers to a user-defined learning rate scheduling function, that is passed through `lr_schedule_function`.



                When Mapping, refers to a torch.optim.lr_scheduler._LRScheduler, following the below API:

                    lr_mode = {LR_SCHEDULER_CLASS_NAME: {**LR_SCHEDULER_KWARGS, "phase": XXX, "metric_name": XXX)

                    Where "phase" (of Phase type) controls when to call torch.optim.lr_scheduler._LRScheduler.step().

                    The "metric_name" refers to the metric to watch (See docs for "metric_to_watch" in train(...)
                     https://docs.deci.ai/super-gradients/docstring/training/sg_trainer.html) when using
                      ReduceLROnPlateau. In any other case this kwarg is ignored.

                    **LR_SCHEDULER_KWARGS are simply passed to the torch scheduler's __init__.


                    For example:
                        lr_mode = {"StepLR": {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}}
                        is equivalent to following training code:

                            from torch.optim.lr_scheduler import StepLR
                            ...
                            optimizer = ....
                            scheduler = StepLR(optimizer=optimizer, gamma=0.1, step_size=1)

                            for epoch in num_epochs:
                                train_epoch(...)
                                scheduler.step()
                                ....



            - `lr_schedule_function` : Union[callable,None]

                Learning rate scheduling function to be used when `lr_mode` is 'FunctionLRScheduler'.

            - `warmup_mode`: Union[str, Type[LRCallbackBase], None]

                If not None, define how the learning rate will be increased during the warmup phase.
                Currently, only 'warmup_linear_epoch' and `warmup_linear_step` modes are supported.

            - `lr_warmup_epochs` : int (default=0)

                Number of epochs for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
                Relevant for `warmup_mode=warmup_linear_epoch`.
                When lr_warmup_epochs > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
                once per epoch.

            - `lr_warmup_steps` : int (default=0)

                Number of steps for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
                Relevant for `warmup_mode=warmup_linear_step`.
                When lr_warmup_steps > 0, the learning rate will be increased linearly from 0 to the `initial_lr`
                for a total number of steps according to formula: min(lr_warmup_steps, len(train_loader)).
                The capping is done to avoid interference of warmup with epoch-based schedulers.

            - `cosine_final_lr_ratio` : float (default=0.01)
                Final learning rate ratio (only relevant when `lr_mode`='CosineLRScheduler'). The cosine starts from initial_lr and reaches
                 initial_lr * cosine_final_lr_ratio in last epoch

            - `inital_lr` : float

                Initial learning rate.

            - `loss` : Union[nn.module, str]

                Loss function for training.
                One of SuperGradient's built in options:

                    - CrossEntropyLoss,
                    - MSELoss,
                    - RSquaredLoss,
                    - YoLoV3DetectionLoss,
                    - ShelfNetOHEMLoss,
                    - ShelfNetSemanticEncodingLoss,
                    - SSDLoss,


                or user defined nn.module loss function.

                IMPORTANT: forward(...) should return a (loss, loss_items) tuple where loss is the tensor used
                for backprop (i.e what your original loss function returns), and loss_items should be a tensor of
                shape (n_items), of values computed during the forward pass which we desire to log over the
                entire epoch. For example- the loss itself should always be logged. Another example is a scenario
                where the computed loss is the sum of a few components we would like to log- these entries in
                loss_items).

                IMPORTANT:When dealing with external loss classes, to logg/monitor the loss_items as described
                above by specific string name:

                Set a "component_names" property in the loss class, whos instance is passed through train_params,
                 to be a list of strings, of length n_items who's ith element is the name of the ith entry in loss_items.
                 Then each item will be logged, rendered on tensorboard and "watched" (i.e saving model checkpoints
                 according to it) under <LOSS_CLASS.__name__>"/"<COMPONENT_NAME>. If a single item is returned rather then a
                 tuple, it would be logged under <LOSS_CLASS.__name__>. When there is no such attributed, the items
                 will be named <LOSS_CLASS.__name__>"/"Loss_"<IDX> according to the length of loss_items

                For example:
                    class MyLoss(_Loss):
                        ...
                        def forward(self, inputs, targets):
                            ...
                            total_loss = comp1 + comp2
                            loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                            return total_loss, loss_items
                        ...
                        @property
                        def component_names(self):
                            return ["total_loss", "my_1st_component", "my_2nd_component"]

                Trainer.train(...
                                train_params={"loss":MyLoss(),
                                                ...
                                                "metric_to_watch": "MyLoss/my_1st_component"}

                    This will write to log and monitor MyLoss/total_loss, MyLoss/my_1st_component,
                     MyLoss/my_2nd_component.

               For example:
                    class MyLoss2(_Loss):
                        ...
                        def forward(self, inputs, targets):
                            ...
                            total_loss = comp1 + comp2
                            loss_items = torch.cat((total_loss.unsqueeze(0),comp1.unsqueeze(0), comp2.unsqueeze(0)).detach()
                            return total_loss, loss_items
                        ...

                Trainer.train(...
                                train_params={"loss":MyLoss(),
                                                ...
                                                "metric_to_watch": "MyLoss2/loss_0"}

                    This will write to log and monitor MyLoss2/loss_0, MyLoss2/loss_1, MyLoss2/loss_2
                    as they have been named by their positional index in loss_items.

                Since running logs will save the loss_items in some internal state, it is recommended that
                loss_items are detached from their computational graph for memory efficiency.

            - `optimizer` : Union[str, torch.optim.Optimizer]

                Optimization algorithm. One of ['Adam','SGD','RMSProp'] corresponding to the torch.optim
                optimzers implementations, or any object that implements torch.optim.Optimizer.

            - `criterion_params` : dict

                Loss function parameters.

            - `optimizer_params` : dict
                When `optimizer` is one of ['Adam','SGD','RMSProp'], it will be initialized with optimizer_params.

                (see https://pytorch.org/docs/stable/optim.html for the full list of
                parameters for each optimizer).

            - `train_metrics_list` : list(torchmetrics.Metric)

                Metrics to log during training. For more information on torchmetrics see
                https://torchmetrics.rtfd.io/en/latest/.


            - `valid_metrics_list` : list(torchmetrics.Metric)

                Metrics to log during validation/testing. For more information on torchmetrics see
                https://torchmetrics.rtfd.io/en/latest/.


            - `loss_logging_items_names` : list(str)

                The list of names/titles for the outputs returned from the loss functions forward pass (reminder-
                the loss function should return the tuple (loss, loss_items)). These names will be used for
                logging their values.

            - `metric_to_watch` : str (default="Accuracy")

                will be the metric which the model checkpoint will be saved according to, and can be set to any
                of the following:

                    a metric name (str) of one of the metric objects from the valid_metrics_list

                    a "metric_name" if some metric in valid_metrics_list has an attribute component_names which
                    is a list referring to the names of each entry in the output metric (torch tensor of size n)

                    one of "loss_logging_items_names" i.e which will correspond to an item returned during the
                    loss function's forward pass (see loss docs abov).

                At the end of each epoch, if a new best metric_to_watch value is achieved, the models checkpoint
                is saved in YOUR_PYTHON_PATH/checkpoints/ckpt_best.pth

            - `greater_metric_to_watch_is_better` : bool

                When choosing a model's checkpoint to be saved, the best achieved model is the one that maximizes the
                 metric_to_watch when this parameter is set to True, and a one that minimizes it otherwise.

            - `ema` : bool (default=False)

                Whether to use Model Exponential Moving Average (see
                https://github.com/rwightman/pytorch-image-models ema implementation)

            - `batch_accumulate` : int (default=1)

                Number of batches to accumulate before every backward pass.

            - `ema_params` : dict

                Parameters for the ema model.

            - `zero_weight_decay_on_bias_and_bn` : bool (default=False)

                Whether to apply weight decay on batch normalization parameters or not (ignored when the passed
                optimizer has already been initialized).


            - `load_opt_params` : bool (default=True)

                Whether to load the optimizers parameters as well when loading a model's checkpoint.

            - `run_validation_freq` : int (default=1)

                The frequency in which validation is performed during training (i.e the validation is ran every
                 `run_validation_freq` epochs). Also applies to test set if you provided one.

            - `run_test_freq` : int (default=1)

                The frequency in which test is performed during training (i.e the test is ran every
                 `run_test_freq` epochs). Only applies if you provided a test set.

            - `save_model` : bool (default=True)

                Whether to save the model checkpoints.

            - `silent_mode` : bool

                Silents the print outs.

            - `mixed_precision` : bool

                Whether to use mixed precision or not.

            - `save_ckpt_epoch_list` : list(int) (default=[])

                List of fixed epoch indices the user wishes to save checkpoints in.

            - `average_best_models` : bool (default=False)

                If set, a snapshot dictionary file and the average model will be saved / updated at every epoch
                and evaluated only when training is completed. The snapshot file will only be deleted upon
                completing the training. The snapshot dict will be managed on cpu.

            - `precise_bn` : bool (default=False)

                Whether to use precise_bn calculation during the training.

            - `precise_bn_batch_size` : int (default=None)

                The effective batch size we want to calculate the batchnorm on. For example, if we are training a model
                on 8 gpus, with a batch of 128 on each gpu, a good rule of thumb would be to give it 8192
                (ie: effective_batch_size * num_gpus = batch_per_gpu * num_gpus * num_gpus).
                If precise_bn_batch_size is not provided in the training_params, the latter heuristic will be taken.

            - `seed` : int (default=42)

                Random seed to be set for torch, numpy, and random. When using DDP each process will have it's seed
                set to seed + rank.


            - `log_installed_packages` : bool (default=False)

                When set, the list of all installed packages (and their versions) will be written to the tensorboard
                 and logfile (useful when trying to reproduce results).

            - `dataset_statistics` : bool (default=False)

                Enable a statistic analysis of the dataset. If set to True the dataset will be analyzed and a report
                will be added to the tensorboard along with some sample images from the dataset. Currently only
                detection datasets are supported for analysis.

            -  `sg_logger` : Union[AbstractSGLogger, str] (defauls=base_sg_logger)

                Define the SGLogger object for this training process. The SGLogger handles all disk writes, logs, TensorBoard, remote logging
                and remote storage. By overriding the default base_sg_logger, you can change the storage location, support external monitoring and logging
                or support remote storage.

            -   `sg_logger_params` : dict

                SGLogger parameters

            -   `clip_grad_norm` : float

                Defines a maximal L2 norm of the gradients. Values which exceed the given value will be clipped

            -   `lr_cooldown_epochs` : int (default=0)

                Number of epochs to cooldown LR (i.e the last epoch from scheduling view point=max_epochs-cooldown).

            -   `pre_prediction_callback` : Callable (default=None)

                 When not None, this callback will be applied to images and targets, and returning them to be used
                  for the forward pass, and further computations. Args for this callable should be in the order
                  (inputs, targets, batch_idx) returning modified_inputs, modified_targets

            -   `ckpt_best_name` : str (default='ckpt_best.pth')

                The best checkpoint (according to metric_to_watch) will be saved under this filename in the checkpoints directory.

            -   `max_train_batches`: int, for debug- when not None- will break out of inner train loop (i.e iterating over
                  train_loader) when reaching this number of batches. Usefull for debugging (default=None).

            -   `max_valid_batches`: int, for debug- when not None- will break out of inner valid loop (i.e iterating over
                  valid_loader) when reaching this number of batches. Usefull for debugging (default=None).

            -   `resume_from_remote_sg_logger`: bool (default=False),  bool (default=False), When true, ckpt_name (checkpoint filename
                   to resume i.e ckpt_latest.pth bydefault) will be downloaded into the experiment checkpoints directory
                   prior to loading weights, then training is resumed from that checkpoint. The source is unique to
                   every logger, and currently supported for WandB loggers only.

                   IMPORTANT: Only works for experiments that were ran with sg_logger_params.save_checkpoints_remote=True.
                   IMPORTANT: For WandB loggers, one must also pass the run id through the wandb_id arg in sg_logger_params.



    :return:
    """

    global logger
    if training_params is None:
        training_params = dict()

    self.train_loader = train_loader if train_loader is not None else self.train_loader
    self.valid_loader = valid_loader if valid_loader is not None else self.valid_loader
    self.test_loaders = test_loaders if test_loaders is not None else {}

    if self.train_loader is None:
        raise ValueError("No `train_loader` found. Please provide a value for `train_loader`")

    if self.valid_loader is None:
        raise ValueError("No `valid_loader` found. Please provide a value for `valid_loader`")

    if self.test_loaders is not None and not isinstance(self.test_loaders, dict):
        raise ValueError("`test_loaders` must be a dictionary mapping dataset names to DataLoaders")

    if hasattr(self.train_loader, "batch_sampler") and self.train_loader.batch_sampler is not None:
        batch_size = self.train_loader.batch_sampler.batch_size
    else:
        batch_size = self.train_loader.batch_size

    if len(self.train_loader.dataset) % batch_size != 0 and not self.train_loader.drop_last:
        logger.warning("Train dataset size % batch_size != 0 and drop_last=False, this might result in smaller " "last batch.")

    if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
        # Note: the dataloader uses sampler of the batch_sampler when it is not None.
        train_sampler = self.train_loader.batch_sampler.sampler if self.train_loader.batch_sampler is not None else self.train_loader.sampler
        if isinstance(train_sampler, SequentialSampler):
            raise ValueError(
                "You are using a SequentialSampler on you training dataloader, while working on DDP. "
                "This cancels the DDP benefits since it makes each process iterate through the entire dataset"
            )
        if not isinstance(train_sampler, (DistributedSampler, RepeatAugSampler)):
            logger.warning(
                "The training sampler you are using might not support DDP. "
                "If it doesnt, please use one of the following sampler: DistributedSampler, RepeatAugSampler"
            )
    self.training_params = TrainingParams()
    self.training_params.override(**training_params)

    self.net = model

    self._prep_net_for_train()
    self._load_checkpoint_to_model()
    if not self.ddp_silent_mode:
        self._initialize_sg_logger_objects(additional_configs_to_log)

    # SET RANDOM SEED
    random_seed(is_ddp=device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL, device=device_config.device, seed=self.training_params.seed)

    silent_mode = self.training_params.silent_mode or self.ddp_silent_mode
    # METRICS
    self._set_train_metrics(train_metrics_list=self.training_params.train_metrics_list)
    self._set_valid_metrics(valid_metrics_list=self.training_params.valid_metrics_list)
    self.test_metrics = self.valid_metrics.clone()

    # Store the metric to follow (loss\accuracy) and initialize as the worst value
    self.metric_to_watch = self.training_params.metric_to_watch
    self.greater_metric_to_watch_is_better = self.training_params.greater_metric_to_watch_is_better

    if isinstance(self.training_params.loss, Mapping) or isinstance(self.training_params.loss, str):
        self.criterion = LossesFactory().get(self.training_params.loss)

    elif isinstance(self.training_params.loss, nn.Module):
        self.criterion = self.training_params.loss

    self.criterion.to(device_config.device)

    if self.training_params.torch_compile_loss:
        if torch_version_is_greater_or_equal(2, 0):
            logger.info("Using torch.compile feature. Compiling loss. This may take a few minutes")
            self.criterion = torch.compile(self.criterion, **self.training_params.torch_compile_options)
            logger.info("Loss compilation complete. Continuing training")
            if is_distributed():
                torch.distributed.barrier()
        else:
            logger.warning(
                "Your recipe has requested use of torch.compile. "
                f"However torch.compile is not supported in this version of PyTorch ({torch.__version__}). "
                "A Pytorch 2.0 or greater version is required. Ignoring torch_compile flag"
            )

    self.max_epochs = self.training_params.max_epochs

    self.ema = self.training_params.ema

    self.precise_bn = self.training_params.precise_bn
    self.precise_bn_batch_size = self.training_params.precise_bn_batch_size

    self.batch_accumulate = self.training_params.batch_accumulate
    num_batches = len(self.train_loader)

    if self.ema:
        self.ema_model = self._instantiate_ema_model(self.training_params.ema_params)
        self.ema_model.updates = self.start_epoch * num_batches // self.batch_accumulate
        if self.load_checkpoint:
            if "ema_net" in self.checkpoint.keys():
                self.ema_model.ema.load_state_dict(self.checkpoint["ema_net"])
            else:
                self.ema = False
                logger.warning("[Warning] Checkpoint does not include EMA weights, continuing training without EMA.")

    self.run_validation_freq = self.training_params.run_validation_freq
    self.run_test_freq = self.training_params.run_test_freq

    inf_time = 0
    timer = core_utils.Timer(device_config.device)

    # IF THE LR MODE IS NOT DEFAULT TAKE IT FROM THE TRAINING PARAMS
    self.lr_mode = self.training_params.lr_mode
    load_opt_params = self.training_params.load_opt_params

    self.phase_callbacks = self.training_params.phase_callbacks or []
    self.phase_callbacks = ListFactory(CallbacksFactory()).get(self.phase_callbacks)

    warmup_mode = self.training_params.warmup_mode
    warmup_callback_cls = None
    if isinstance(warmup_mode, str):
        from super_gradients.common.registry.registry import warn_if_deprecated

        warn_if_deprecated(warmup_mode, LR_WARMUP_CLS_DICT)

        warmup_callback_cls = LR_WARMUP_CLS_DICT[warmup_mode]
    elif isinstance(warmup_mode, type) and issubclass(warmup_mode, LRCallbackBase):
        warmup_callback_cls = warmup_mode
    elif warmup_mode is not None:
        pass
    else:
        raise RuntimeError("warmup_mode has to be either a name of a mode (str) or a subclass of PhaseCallback")

    if warmup_callback_cls is not None:
        self.phase_callbacks.append(
            warmup_callback_cls(
                train_loader_len=len(self.train_loader),
                net=self.net,
                training_params=self.training_params,
                update_param_groups=self.update_param_groups,
                **self.training_params.to_dict(),
            )
        )

    self._add_metrics_update_callback(Phase.TRAIN_BATCH_END)
    self._add_metrics_update_callback(Phase.VALIDATION_BATCH_END)
    self._add_metrics_update_callback(Phase.TEST_BATCH_END)

    self.phase_callback_handler = CallbackHandler(callbacks=self.phase_callbacks)

    if not self.ddp_silent_mode:
        if self.training_params.dataset_statistics:
            dataset_statistics_logger = DatasetStatisticsTensorboardLogger(self.sg_logger)
            dataset_statistics_logger.analyze(
                self.train_loader, all_classes=self.classes, title="Train-set", anchors=unwrap_model(self.net).arch_params.anchors
            )
            dataset_statistics_logger.analyze(self.valid_loader, all_classes=self.classes, title="val-set")

    sg_trainer_utils.log_uncaught_exceptions(logger)

    if not self.load_checkpoint or self.load_weights_only:
        # WHEN STARTING TRAINING FROM SCRATCH, DO NOT LOAD OPTIMIZER PARAMS (EVEN IF LOADING BACKBONE)
        self.start_epoch = 0
        self._reset_best_metric()
        load_opt_params = False

    if isinstance(self.training_params.optimizer, str) or (
        inspect.isclass(self.training_params.optimizer) and issubclass(self.training_params.optimizer, torch.optim.Optimizer)
    ):
        self.optimizer = build_optimizer(net=unwrap_model(self.net), lr=self.training_params.initial_lr, training_params=self.training_params)
    elif isinstance(self.training_params.optimizer, torch.optim.Optimizer):
        self.optimizer = self.training_params.optimizer
    else:
        raise UnsupportedOptimizerFormat()

    if self.lr_mode is not None:
        lr_scheduler_callback = create_lr_scheduler_callback(
            lr_mode=self.lr_mode,
            train_loader=self.train_loader,
            net=self.net,
            training_params=self.training_params,
            update_param_groups=self.update_param_groups,
            optimizer=self.optimizer,
        )
        self.phase_callbacks.append(lr_scheduler_callback)

        # NEED ACCESS TO THE UNDERLYING TORCH SCHEDULER FOR LOADING/SAVING IT'S STATE_DICT
        if isinstance(lr_scheduler_callback, LRSchedulerCallback):
            self._torch_lr_scheduler = lr_scheduler_callback.scheduler
            if self.load_checkpoint:
                self._torch_lr_scheduler.load_state_dict(self.checkpoint["torch_scheduler_state_dict"])

    # VERIFY GRADIENT CLIPPING VALUE
    if self.training_params.clip_grad_norm is not None and self.training_params.clip_grad_norm <= 0:
        raise TypeError("Params", "Invalid clip_grad_norm")

    if self.load_checkpoint and load_opt_params:
        self.optimizer.load_state_dict(self.checkpoint["optimizer_state_dict"])

    self.pre_prediction_callback = CallbacksFactory().get(self.training_params.pre_prediction_callback)

    self._initialize_mixed_precision(self.training_params.mixed_precision)

    self.ckpt_best_name = self.training_params.ckpt_best_name

    if self.training_params.max_train_batches is not None:
        if self.training_params.max_train_batches > len(self.train_loader):
            logger.warning("max_train_batches is greater than len(self.train_loader) and will have no effect.")
        elif self.training_params.max_train_batches <= 0:
            raise ValueError("max_train_batches must be positive.")

    if self.training_params.max_valid_batches is not None:
        if self.training_params.max_valid_batches > len(self.valid_loader):
            logger.warning("max_valid_batches is greater than len(self.valid_loader) and will have no effect.")
        elif self.training_params.max_valid_batches <= 0:
            raise ValueError("max_valid_batches must be positive.")

    self.max_train_batches = self.training_params.max_train_batches
    self.max_valid_batches = self.training_params.max_valid_batches

    # STATE ATTRIBUTE SET HERE FOR SUBSEQUENT TRAIN() CALLS
    self._first_backward = True

    context = PhaseContext(
        optimizer=self.optimizer,
        net=self.net,
        experiment_name=self.experiment_name,
        ckpt_dir=self.checkpoints_dir_path,
        criterion=self.criterion,
        lr_warmup_epochs=self.training_params.lr_warmup_epochs,
        sg_logger=self.sg_logger,
        train_loader=self.train_loader,
        valid_loader=self.valid_loader,
        training_params=self.training_params,
        ddp_silent_mode=self.ddp_silent_mode,
        checkpoint_params=self.checkpoint_params,
        architecture=self.architecture,
        arch_params=self.arch_params,
        metric_to_watch=self.metric_to_watch,
        device=device_config.device,
        ema_model=self.ema_model,
        valid_metrics=self.valid_metrics,
    )
    self.phase_callback_handler.on_training_start(context)

    # Check if the model supports sliding window inference.
    model = unwrap_model(context.net)
    if (
        context.training_params.phase_callbacks is not None
        and "SlidingWindowValidationCallback" in context.training_params.phase_callbacks
        and (not hasattr(model, "enable_sliding_window_validation") or not hasattr(model, "disable_sliding_window_validation"))
    ):
        raise ValueError(
            "You can use sliding window validation callback, but your model does not support sliding window "
            "inference. Please either remove the callback or use the model that supports sliding inference: "
            "Segformer"
        )

    first_batch = next(iter(self.train_loader))
    inputs, _, _ = sg_trainer_utils.unpack_batch_items(first_batch)

    log_main_training_params(
        multi_gpu=device_config.multi_gpu,
        num_gpus=get_world_size(),
        batch_size=len(inputs),
        batch_accumulate=self.batch_accumulate,
        train_dataset_length=len(self.train_loader.dataset),
        train_dataloader_len=len(self.train_loader),
    )

    processing_params = self._get_preprocessing_from_valid_loader()
    if processing_params is not None:
        unwrap_model(self.net).set_dataset_processing_params(**processing_params)

    try:
        # HEADERS OF THE TRAINING PROGRESS
        if not silent_mode:
            logger.info(f"Started training for {self.max_epochs - self.start_epoch} epochs ({self.start_epoch}/" f"{self.max_epochs - 1})\n")
        for epoch in range(self.start_epoch, self.max_epochs):
            # broadcast_from_master is necessary here, since in DDP mode, only the master node will
            # receive the Ctrl-C signal, and we want all nodes to stop training.
            if broadcast_from_master(context.stop_training):
                logger.info("Request to stop training has been received, stopping training")
                break

            # Phase.TRAIN_EPOCH_START
            # RUN PHASE CALLBACKS
            context.update_context(epoch=epoch)
            self.phase_callback_handler.on_train_loader_start(context)

            # IN DDP- SET_EPOCH WILL CAUSE EVERY PROCESS TO BE EXPOSED TO THE ENTIRE DATASET BY SHUFFLING WITH A
            # DIFFERENT SEED EACH EPOCH START
            if (
                device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL
                and hasattr(self.train_loader, "sampler")
                and hasattr(self.train_loader.sampler, "set_epoch")
            ):
                self.train_loader.sampler.set_epoch(epoch)

            train_metrics_tuple = self._train_epoch(context=context, silent_mode=silent_mode)

            # Phase.TRAIN_EPOCH_END
            # RUN PHASE CALLBACKS
            train_metrics_dict = get_metrics_dict(train_metrics_tuple, self.train_metrics, self.loss_logging_items_names)

            context.update_context(metrics_dict=train_metrics_dict)
            self.phase_callback_handler.on_train_loader_end(context)

            # CALCULATE PRECISE BATCHNORM STATS
            if self.precise_bn:
                compute_precise_bn_stats(
                    model=self.net, loader=self.train_loader, precise_bn_batch_size=self.precise_bn_batch_size, num_gpus=get_world_size()
                )
                if self.ema:
                    compute_precise_bn_stats(
                        model=self.ema_model.ema,
                        loader=self.train_loader,
                        precise_bn_batch_size=self.precise_bn_batch_size,
                        num_gpus=get_world_size(),
                    )

            # model switch - we replace self.net with the ema model for the testing and saving part
            # and then switch it back before the next training epoch
            if self.ema:
                self.ema_model.update_attr(self.net)
                keep_model = self.net
                self.net = self.ema_model.ema

            # RUN TEST ON VALIDATION SET EVERY self.run_validation_freq EPOCHS
            valid_metrics_dict = {}
            if (epoch + 1) % self.run_validation_freq == 0:
                self.phase_callback_handler.on_validation_loader_start(context)
                timer.start()
                valid_metrics_dict = self._validate_epoch(context=context, silent_mode=silent_mode)
                inf_time = timer.stop()

                self.valid_monitored_values = sg_trainer_utils.update_monitored_values_dict(
                    monitored_values_dict=self.valid_monitored_values,
                    new_values_dict=valid_metrics_dict,
                )  # TODO: Move this logic inside a MonitoredValues class
                # Phase.VALIDATION_EPOCH_END
                # RUN PHASE CALLBACKS
                context.update_context(metrics_dict=valid_metrics_dict)
                self.phase_callback_handler.on_validation_loader_end(context)

            test_metrics_dict = {}
            if (epoch + 1) % self.run_test_freq == 0:
                self.phase_callback_handler.on_test_loader_start(context)
                for dataset_name, dataloader in self.test_loaders.items():
                    dataset_metrics_dict = self._test_epoch(data_loader=dataloader, context=context, silent_mode=silent_mode, dataset_name=dataset_name)
                    dataset_metrics_dict_with_name = {
                        f"{dataset_name}:{metric_name}": metric_value for metric_name, metric_value in dataset_metrics_dict.items()
                    }
                    self.test_monitored_values = sg_trainer_utils.update_monitored_values_dict(
                        monitored_values_dict=self.test_monitored_values,
                        new_values_dict=dataset_metrics_dict_with_name,
                    )  # TODO: Move this logic inside a MonitoredValues class

                    test_metrics_dict.update(**dataset_metrics_dict_with_name)
                context.update_context(metrics_dict=test_metrics_dict)
                self.phase_callback_handler.on_test_loader_end(context)

            if self.ema:
                self.net = keep_model

            if not self.ddp_silent_mode:
                # SAVING AND LOGGING OCCURS ONLY IN THE MAIN PROCESS (IN CASES THERE ARE SEVERAL PROCESSES - DDP)
                self._write_to_disk_operations(
                    train_metrics_dict=train_metrics_dict,
                    validation_results_dict=valid_metrics_dict,
                    test_metrics_dict=test_metrics_dict,
                    lr_dict=self._epoch_start_logging_values,
                    inf_time=inf_time,
                    epoch=epoch,
                    context=context,
                )
                self.sg_logger.upload()

            if not silent_mode:
                sg_trainer_utils.display_epoch_summary(
                    epoch=context.epoch,
                    n_digits=4,
                    monitored_values_dict={
                        "Train": self.train_monitored_values,
                        "Validation": self.valid_monitored_values,
                        "Test": self.test_monitored_values,
                    },
                )

        # PHASE.AVERAGE_BEST_MODELS_VALIDATION_START
        self.phase_callback_handler.on_average_best_models_validation_start(context)

        # Evaluating the average model and removing snapshot averaging file if training is completed
        if self.training_params.average_best_models:
            self._validate_final_average_model(context=context, checkpoint_dir_path=self.checkpoints_dir_path, cleanup_snapshots_pkl_file=True)

        # PHASE.AVERAGE_BEST_MODELS_VALIDATION_END
        self.phase_callback_handler.on_average_best_models_validation_end(context)

    except KeyboardInterrupt:
        context.update_context(stop_training=True)
        logger.info(
            "\n[MODEL TRAINING EXECUTION HAS BEEN INTERRUPTED]... Please wait until SOFT-TERMINATION process "
            "finishes and saves all of the Model Checkpoints and log files before terminating..."
        )
        logger.info("For HARD Termination - Stop the process again")

    finally:
        if device_config.multi_gpu == MultiGPUMode.DISTRIBUTED_DATA_PARALLEL:
            # CLEAN UP THE MULTI-GPU PROCESS GROUP WHEN DONE
            if torch.distributed.is_initialized() and self.training_params.kill_ddp_pgroup_on_end:
                torch.distributed.destroy_process_group()

        # PHASE.TRAIN_END
        self.phase_callback_handler.on_training_end(context)

        if not self.ddp_silent_mode:
            self.sg_logger.close()

train_from_config(cfg) classmethod

Trains according to cfg recipe configuration.

Parameters:

Name Type Description Default
cfg Union[DictConfig, dict]

The parsed DictConfig from yaml recipe files or a dictionary

required

Returns:

Type Description
Tuple[nn.Module, Tuple]

the model and the output of trainer.train(...) (i.e results tuple)

Source code in V3_3/src/super_gradients/training/sg_trainer/sg_trainer.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
@classmethod
def train_from_config(cls, cfg: Union[DictConfig, dict]) -> Tuple[nn.Module, Tuple]:
    """
    Trains according to cfg recipe configuration.

    :param cfg: The parsed DictConfig from yaml recipe files or a dictionary
    :return: the model and the output of trainer.train(...) (i.e results tuple)
    """

    # TODO: bind checkpoint_run_id
    setup_device(
        device=core_utils.get_param(cfg, "device"),
        multi_gpu=core_utils.get_param(cfg, "multi_gpu"),
        num_gpus=core_utils.get_param(cfg, "num_gpus"),
    )

    # INSTANTIATE ALL OBJECTS IN CFG
    cfg = hydra.utils.instantiate(cfg)

    # TRIGGER CFG MODIFYING CALLBACKS
    cfg = cls._trigger_cfg_modifying_callbacks(cfg)

    trainer = Trainer(experiment_name=cfg.experiment_name, ckpt_root_dir=cfg.ckpt_root_dir)

    # BUILD NETWORK
    model = models.get(
        model_name=cfg.architecture,
        num_classes=cfg.arch_params.num_classes,
        arch_params=cfg.arch_params,
        strict_load=cfg.checkpoint_params.strict_load,
        pretrained_weights=cfg.checkpoint_params.pretrained_weights,
        checkpoint_path=cfg.checkpoint_params.checkpoint_path,
        load_backbone=cfg.checkpoint_params.load_backbone,
    )

    # INSTANTIATE DATA LOADERS

    train_dataloader = dataloaders.get(
        name=get_param(cfg, "train_dataloader"),
        dataset_params=cfg.dataset_params.train_dataset_params,
        dataloader_params=cfg.dataset_params.train_dataloader_params,
    )

    val_dataloader = dataloaders.get(
        name=get_param(cfg, "val_dataloader"),
        dataset_params=cfg.dataset_params.val_dataset_params,
        dataloader_params=cfg.dataset_params.val_dataloader_params,
    )

    recipe_logged_cfg = {"recipe_config": OmegaConf.to_container(cfg, resolve=True)}
    # TRAIN
    res = trainer.train(
        model=model,
        train_loader=train_dataloader,
        valid_loader=val_dataloader,
        test_loaders=None,  # TODO: Add option to set test_loaders in recipe
        training_params=cfg.training_hyperparams,
        additional_configs_to_log=recipe_logged_cfg,
    )

    return model, res