Skip to content

Processing

CenterCrop

Bases: ClassificationProcess

Parameters:

Name Type Description Default
size int

Desired output size of the crop.

224
Source code in V3_3/src/super_gradients/training/processing/processing.py
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
@register_processing(Processings.CenterCrop)
class CenterCrop(ClassificationProcess):
    """
    :param size: Desired output size of the crop.
    """

    def __init__(self, size: int = 224):
        super().__init__()
        self.size = size

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        """Crops the given image at the center.

        :param image: Image, in (H, W, C) format.
        :return:      The center cropped image.
        """
        height, width = image.shape[0], image.shape[1]

        # Calculate the start and end coordinates of the crop.
        start_x = (width - self.size) // 2
        start_y = (height - self.size) // 2
        end_x = start_x + self.size
        end_y = start_y + self.size

        cropped_image = image[start_y:end_y, start_x:end_x]
        return cropped_image, None

    def get_equivalent_photometric_module(self) -> Optional[nn.Module]:
        return None

    def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
        """
        Infer the output image shape from the processing.

        :return: (rows, cols) Returns the last known output shape for all the processings.
        """
        return (self.size, self.size)

infer_image_input_shape()

Infer the output image shape from the processing.

Returns:

Type Description
Optional[Tuple[int, int]]

(rows, cols) Returns the last known output shape for all the processings.

Source code in V3_3/src/super_gradients/training/processing/processing.py
502
503
504
505
506
507
508
def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
    """
    Infer the output image shape from the processing.

    :return: (rows, cols) Returns the last known output shape for all the processings.
    """
    return (self.size, self.size)

preprocess_image(image)

Crops the given image at the center.

Parameters:

Name Type Description Default
image np.ndarray

Image, in (H, W, C) format.

required

Returns:

Type Description
Tuple[np.ndarray, None]

The center cropped image.

Source code in V3_3/src/super_gradients/training/processing/processing.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
    """Crops the given image at the center.

    :param image: Image, in (H, W, C) format.
    :return:      The center cropped image.
    """
    height, width = image.shape[0], image.shape[1]

    # Calculate the start and end coordinates of the crop.
    start_x = (width - self.size) // 2
    start_y = (height - self.size) // 2
    end_x = start_x + self.size
    end_y = start_y + self.size

    cropped_image = image[start_y:end_y, start_x:end_x]
    return cropped_image, None

ComposeProcessing

Bases: Processing

Compose a list of Processing objects into a single Processing object.

Source code in V3_3/src/super_gradients/training/processing/processing.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@register_processing(Processings.ComposeProcessing)
class ComposeProcessing(Processing):
    """Compose a list of Processing objects into a single Processing object."""

    def __init__(self, processings: List[Processing]):
        self.processings = processings

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, ComposeProcessingMetadata]:
        """Processing an image, before feeding it to the network."""
        processed_image, metadata_lst = image.copy(), []
        for processing in self.processings:
            processed_image, metadata = processing.preprocess_image(image=processed_image)
            metadata_lst.append(metadata)
        return processed_image, ComposeProcessingMetadata(metadata_lst=metadata_lst)

    def postprocess_predictions(self, predictions: Prediction, metadata: ComposeProcessingMetadata) -> Prediction:
        """Postprocess the model output predictions."""
        postprocessed_predictions = predictions
        for processing, metadata in zip(self.processings[::-1], metadata.metadata_lst[::-1]):
            postprocessed_predictions = processing.postprocess_predictions(postprocessed_predictions, metadata)
        return postprocessed_predictions

    def get_equivalent_photometric_module(self) -> nn.Module:
        modules = []
        for p in self.processings:
            module = p.get_equivalent_photometric_module()
            if module is not None and not isinstance(module, nn.Identity):
                modules.append(module)

        return nn.Sequential(*modules)

    def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
        """
        Infer the output image shape from the processing.

        :return: (rows, cols) Returns the last known output shape for all the processings.
        """
        output_shape = None
        for p in self.processings:
            new_output_shape = p.infer_image_input_shape()
            if new_output_shape is not None:
                output_shape = new_output_shape

        return output_shape

infer_image_input_shape()

Infer the output image shape from the processing.

Returns:

Type Description
Optional[Tuple[int, int]]

(rows, cols) Returns the last known output shape for all the processings.

Source code in V3_3/src/super_gradients/training/processing/processing.py
119
120
121
122
123
124
125
126
127
128
129
130
131
def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
    """
    Infer the output image shape from the processing.

    :return: (rows, cols) Returns the last known output shape for all the processings.
    """
    output_shape = None
    for p in self.processings:
        new_output_shape = p.infer_image_input_shape()
        if new_output_shape is not None:
            output_shape = new_output_shape

    return output_shape

postprocess_predictions(predictions, metadata)

Postprocess the model output predictions.

Source code in V3_3/src/super_gradients/training/processing/processing.py
103
104
105
106
107
108
def postprocess_predictions(self, predictions: Prediction, metadata: ComposeProcessingMetadata) -> Prediction:
    """Postprocess the model output predictions."""
    postprocessed_predictions = predictions
    for processing, metadata in zip(self.processings[::-1], metadata.metadata_lst[::-1]):
        postprocessed_predictions = processing.postprocess_predictions(postprocessed_predictions, metadata)
    return postprocessed_predictions

preprocess_image(image)

Processing an image, before feeding it to the network.

Source code in V3_3/src/super_gradients/training/processing/processing.py
 95
 96
 97
 98
 99
100
101
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, ComposeProcessingMetadata]:
    """Processing an image, before feeding it to the network."""
    processed_image, metadata_lst = image.copy(), []
    for processing in self.processings:
        processed_image, metadata = processing.preprocess_image(image=processed_image)
        metadata_lst.append(metadata)
    return processed_image, ComposeProcessingMetadata(metadata_lst=metadata_lst)

ImagePermute

Bases: Processing

Permute the image dimensions.

Parameters:

Name Type Description Default
permutation Tuple[int, int, int]

Specify new order of dims. Default value (2, 0, 1) suitable for converting from HWC to CHW format.

(2, 0, 1)
Source code in V3_3/src/super_gradients/training/processing/processing.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
@register_processing(Processings.ImagePermute)
class ImagePermute(Processing):
    """Permute the image dimensions.

    :param permutation: Specify new order of dims. Default value (2, 0, 1) suitable for converting from HWC to CHW format.
    """

    def __init__(self, permutation: Tuple[int, int, int] = (2, 0, 1)):
        self.permutation = permutation

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        processed_image = np.ascontiguousarray(image.transpose(*self.permutation))
        return processed_image, None

    def postprocess_predictions(self, predictions: Prediction, metadata: None) -> Prediction:
        return predictions

    def get_equivalent_photometric_module(self) -> Optional[nn.Module]:
        return None

NormalizeImage

Bases: Processing

Normalize an image based on means and standard deviation.

Parameters:

Name Type Description Default
mean List[float]

Mean values for each channel.

required
std List[float]

Standard deviation values for each channel.

required
Source code in V3_3/src/super_gradients/training/processing/processing.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
@register_processing(Processings.NormalizeImage)
class NormalizeImage(Processing):
    """Normalize an image based on means and standard deviation.

    :param mean:    Mean values for each channel.
    :param std:     Standard deviation values for each channel.
    """

    def __init__(self, mean: List[float], std: List[float]):
        self.mean = np.array(mean).reshape((1, 1, -1)).astype(np.float32)
        self.std = np.array(std).reshape((1, 1, -1)).astype(np.float32)

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        return (image - self.mean) / self.std, None

    def postprocess_predictions(self, predictions: Prediction, metadata: None) -> Prediction:
        return predictions

    def get_equivalent_photometric_module(self) -> nn.Module:
        from super_gradients.conversion.preprocessing_modules import ApplyMeanStd

        return ApplyMeanStd(mean=self.mean, std=self.std)

Processing

Bases: ABC

Interface for preprocessing and postprocessing methods that are used to prepare images for a model and process the model's output.

Subclasses should implement the preprocess_image and postprocess_predictions methods according to the specific requirements of the model and task.

Source code in V3_3/src/super_gradients/training/processing/processing.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class Processing(ABC):
    """Interface for preprocessing and postprocessing methods that are
    used to prepare images for a model and process the model's output.

    Subclasses should implement the `preprocess_image` and `postprocess_predictions`
    methods according to the specific requirements of the model and task.
    """

    @abstractmethod
    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, Union[None, ProcessingMetadata]]:
        """Processing an image, before feeding it to the network. Expected to be in (H, W, C) or (H, W)."""
        pass

    @abstractmethod
    def postprocess_predictions(self, predictions: Prediction, metadata: Union[None, ProcessingMetadata]) -> Prediction:
        """Postprocess the model output predictions."""
        pass

    @abstractmethod
    def get_equivalent_photometric_module(self) -> Optional[nn.Module]:
        """
        Get the equivalent photometric preprocessing module for this processing.
        A photometric preprocessing apply a transformation to the image pixels, without changing the image size.
        This includes RGB -> BGR, standardization, normalization etc.
        If a Processing subclass does not have change pixel values, it should return an nn.Identity module.
        If a Processing subclass does not have an equivalent photometric preprocessing, it should return None.
        :return:
        """
        pass

    def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
        """
        Infer the shape (rows, cols) of the image after all the processing steps.
        This is the effective image size that is fed to model itself
        :return: Return the image shape (rows, cols), or None if the image shape cannot be inferred (When preprocessing
        contains no resize/padding operations).
        """
        return None

get_equivalent_photometric_module() abstractmethod

Get the equivalent photometric preprocessing module for this processing. A photometric preprocessing apply a transformation to the image pixels, without changing the image size. This includes RGB -> BGR, standardization, normalization etc. If a Processing subclass does not have change pixel values, it should return an nn.Identity module. If a Processing subclass does not have an equivalent photometric preprocessing, it should return None.

Returns:

Type Description
Optional[nn.Module]
Source code in V3_3/src/super_gradients/training/processing/processing.py
66
67
68
69
70
71
72
73
74
75
76
@abstractmethod
def get_equivalent_photometric_module(self) -> Optional[nn.Module]:
    """
    Get the equivalent photometric preprocessing module for this processing.
    A photometric preprocessing apply a transformation to the image pixels, without changing the image size.
    This includes RGB -> BGR, standardization, normalization etc.
    If a Processing subclass does not have change pixel values, it should return an nn.Identity module.
    If a Processing subclass does not have an equivalent photometric preprocessing, it should return None.
    :return:
    """
    pass

infer_image_input_shape()

Infer the shape (rows, cols) of the image after all the processing steps. This is the effective image size that is fed to model itself

Returns:

Type Description
Optional[Tuple[int, int]]

Return the image shape (rows, cols), or None if the image shape cannot be inferred (When preprocessing contains no resize/padding operations).

Source code in V3_3/src/super_gradients/training/processing/processing.py
78
79
80
81
82
83
84
85
def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
    """
    Infer the shape (rows, cols) of the image after all the processing steps.
    This is the effective image size that is fed to model itself
    :return: Return the image shape (rows, cols), or None if the image shape cannot be inferred (When preprocessing
    contains no resize/padding operations).
    """
    return None

postprocess_predictions(predictions, metadata) abstractmethod

Postprocess the model output predictions.

Source code in V3_3/src/super_gradients/training/processing/processing.py
61
62
63
64
@abstractmethod
def postprocess_predictions(self, predictions: Prediction, metadata: Union[None, ProcessingMetadata]) -> Prediction:
    """Postprocess the model output predictions."""
    pass

preprocess_image(image) abstractmethod

Processing an image, before feeding it to the network. Expected to be in (H, W, C) or (H, W).

Source code in V3_3/src/super_gradients/training/processing/processing.py
56
57
58
59
@abstractmethod
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, Union[None, ProcessingMetadata]]:
    """Processing an image, before feeding it to the network. Expected to be in (H, W, C) or (H, W)."""
    pass

ProcessingMetadata dataclass

Bases: ABC

Metadata including information to postprocess a prediction.

Source code in V3_3/src/super_gradients/training/processing/processing.py
26
27
28
@dataclass
class ProcessingMetadata(ABC):
    """Metadata including information to postprocess a prediction."""

Resize

Bases: ClassificationProcess

Source code in V3_3/src/super_gradients/training/processing/processing.py
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
@register_processing(Processings.Resize)
class Resize(ClassificationProcess):
    def __init__(self, size: int = 224):
        super().__init__()
        self.size = size

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        """Resize an image.

        :param image: Image, in (H, W, C) format.
        :return:      The resized image.
        """
        image = Image.fromarray(image)
        resized_image = image.resize((self.size, self.size))
        resized_image = np.array(resized_image)

        return resized_image, None

    def get_equivalent_photometric_module(self) -> Optional[nn.Module]:
        return None

    def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
        """
        Infer the output image shape from the processing.

        :return: (rows, cols) Returns the last known output shape for all the processings.
        """
        return (self.size, self.size)

infer_image_input_shape()

Infer the output image shape from the processing.

Returns:

Type Description
Optional[Tuple[int, int]]

(rows, cols) Returns the last known output shape for all the processings.

Source code in V3_3/src/super_gradients/training/processing/processing.py
463
464
465
466
467
468
469
def infer_image_input_shape(self) -> Optional[Tuple[int, int]]:
    """
    Infer the output image shape from the processing.

    :return: (rows, cols) Returns the last known output shape for all the processings.
    """
    return (self.size, self.size)

preprocess_image(image)

Resize an image.

Parameters:

Name Type Description Default
image np.ndarray

Image, in (H, W, C) format.

required

Returns:

Type Description
Tuple[np.ndarray, None]

The resized image.

Source code in V3_3/src/super_gradients/training/processing/processing.py
448
449
450
451
452
453
454
455
456
457
458
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
    """Resize an image.

    :param image: Image, in (H, W, C) format.
    :return:      The resized image.
    """
    image = Image.fromarray(image)
    resized_image = image.resize((self.size, self.size))
    resized_image = np.array(resized_image)

    return resized_image, None

ReverseImageChannels

Bases: Processing

Reverse the order of the image channels (RGB -> BGR or BGR -> RGB).

Source code in V3_3/src/super_gradients/training/processing/processing.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
@register_processing(Processings.ReverseImageChannels)
class ReverseImageChannels(Processing):
    """Reverse the order of the image channels (RGB -> BGR or BGR -> RGB)."""

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        """Reverse the channel order of an image.

        :param image: Image, in (H, W, C) format.
        :return:      Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)
        """

        if image.shape[2] != 3:
            raise ValueError("ReverseImageChannels expects 3 channels, got: " + str(image.shape[2]))

        processed_image = image[..., ::-1]
        return processed_image, None

    def postprocess_predictions(self, predictions: Prediction, metadata: None) -> Prediction:
        return predictions

    def get_equivalent_photometric_module(self) -> nn.Module:
        from super_gradients.conversion.preprocessing_modules import ChannelSelect

        return ChannelSelect(channels=np.array([2, 1, 0], dtype=int))

preprocess_image(image)

Reverse the channel order of an image.

Parameters:

Name Type Description Default
image np.ndarray

Image, in (H, W, C) format.

required

Returns:

Type Description
Tuple[np.ndarray, None]

Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)

Source code in V3_3/src/super_gradients/training/processing/processing.py
159
160
161
162
163
164
165
166
167
168
169
170
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
    """Reverse the channel order of an image.

    :param image: Image, in (H, W, C) format.
    :return:      Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)
    """

    if image.shape[2] != 3:
        raise ValueError("ReverseImageChannels expects 3 channels, got: " + str(image.shape[2]))

    processed_image = image[..., ::-1]
    return processed_image, None

StandardizeImage

Bases: Processing

Standardize image pixel values with img/max_val

Parameters:

Name Type Description Default
max_value float

Current maximum value of the image pixels. (usually 255)

255.0
Source code in V3_3/src/super_gradients/training/processing/processing.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@register_processing(Processings.StandardizeImage)
class StandardizeImage(Processing):
    """Standardize image pixel values with img/max_val

    :param max_value: Current maximum value of the image pixels. (usually 255)
    """

    def __init__(self, max_value: float = 255.0):
        super().__init__()
        self.max_value = max_value

    def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
        """Reverse the channel order of an image.

        :param image: Image, in (H, W, C) format.
        :return:      Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)
        """
        processed_image = (image / self.max_value).astype(np.float32)
        return processed_image, None

    def postprocess_predictions(self, predictions: Prediction, metadata: None) -> Prediction:
        return predictions

    def update_mean_std_normalization(self, mean: np.ndarray, std: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        mean = mean / self.max_value
        std = std / self.max_value
        return mean, std

    def get_equivalent_photometric_module(self) -> nn.Module:
        from super_gradients.conversion.preprocessing_modules import ApplyMeanStd

        return ApplyMeanStd(mean=np.array([0], dtype=np.float32), std=np.array([self.max_value], dtype=np.float32))

preprocess_image(image)

Reverse the channel order of an image.

Parameters:

Name Type Description Default
image np.ndarray

Image, in (H, W, C) format.

required

Returns:

Type Description
Tuple[np.ndarray, None]

Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)

Source code in V3_3/src/super_gradients/training/processing/processing.py
192
193
194
195
196
197
198
199
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, None]:
    """Reverse the channel order of an image.

    :param image: Image, in (H, W, C) format.
    :return:      Image with reversed channel order. (RGB if input was BGR, BGR if input was RGB)
    """
    processed_image = (image / self.max_value).astype(np.float32)
    return processed_image, None

default_dekr_coco_processing_params()

Processing parameters commonly used for training DEKR on COCO dataset.

Source code in V3_3/src/super_gradients/training/processing/processing.py
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def default_dekr_coco_processing_params() -> dict:
    """Processing parameters commonly used for training DEKR on COCO dataset."""

    image_processor = ComposeProcessing(
        [
            ReverseImageChannels(),
            KeypointsLongestMaxSizeRescale(output_shape=(640, 640)),
            KeypointsBottomRightPadding(output_shape=(640, 640), pad_value=127),
            StandardizeImage(max_value=255.0),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            ImagePermute(permutation=(2, 0, 1)),
        ]
    )

    edge_links = [
        [0, 1],
        [0, 2],
        [1, 2],
        [1, 3],
        [2, 4],
        [3, 5],
        [4, 6],
        [5, 6],
        [5, 7],
        [5, 11],
        [6, 8],
        [6, 12],
        [7, 9],
        [8, 10],
        [11, 12],
        [11, 13],
        [12, 14],
        [13, 15],
        [14, 16],
    ]

    edge_colors = [
        (214, 39, 40),  # Nose -> LeftEye
        (148, 103, 189),  # Nose -> RightEye
        (44, 160, 44),  # LeftEye -> RightEye
        (140, 86, 75),  # LeftEye -> LeftEar
        (227, 119, 194),  # RightEye -> RightEar
        (127, 127, 127),  # LeftEar -> LeftShoulder
        (188, 189, 34),  # RightEar -> RightShoulder
        (127, 127, 127),  # Shoulders
        (188, 189, 34),  # LeftShoulder -> LeftElbow
        (140, 86, 75),  # LeftTorso
        (23, 190, 207),  # RightShoulder -> RightElbow
        (227, 119, 194),  # RightTorso
        (31, 119, 180),  # LeftElbow -> LeftArm
        (255, 127, 14),  # RightElbow -> RightArm
        (148, 103, 189),  # Waist
        (255, 127, 14),  # Left Hip -> Left Knee
        (214, 39, 40),  # Right Hip -> Right Knee
        (31, 119, 180),  # Left Knee -> Left Ankle
        (44, 160, 44),  # Right Knee -> Right Ankle
    ]

    keypoint_colors = [
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
        (31, 119, 180),
        (148, 103, 189),
    ]
    params = dict(image_processor=image_processor, conf=0.05, edge_links=edge_links, edge_colors=edge_colors, keypoint_colors=keypoint_colors)
    return params

default_imagenet_processing_params()

Processing parameters commonly used for training resnet on Imagenet dataset.

Source code in V3_3/src/super_gradients/training/processing/processing.py
739
740
741
742
743
744
745
746
747
748
def default_imagenet_processing_params() -> dict:
    """Processing parameters commonly used for training resnet on Imagenet dataset."""
    image_processor = ComposeProcessing(
        [Resize(size=256), CenterCrop(size=224), StandardizeImage(), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ImagePermute()]
    )
    params = dict(
        class_names=IMAGENET_CLASSES,
        image_processor=image_processor,
    )
    return params

default_ppyoloe_coco_processing_params()

Processing parameters commonly used for training PPYoloE on COCO dataset. TODO: remove once we load it from the checkpoint

Source code in V3_3/src/super_gradients/training/processing/processing.py
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
def default_ppyoloe_coco_processing_params() -> dict:
    """Processing parameters commonly used for training PPYoloE on COCO dataset.
    TODO: remove once we load it from the checkpoint
    """

    image_processor = ComposeProcessing(
        [
            ReverseImageChannels(),
            DetectionRescale(output_shape=(640, 640)),
            NormalizeImage(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]),
            ImagePermute(permutation=(2, 0, 1)),
        ]
    )

    params = dict(
        class_names=COCO_DETECTION_CLASSES_LIST,
        image_processor=image_processor,
        iou=0.65,
        conf=0.5,
    )
    return params

default_vit_imagenet_processing_params()

Processing parameters used by ViT for training resnet on Imagenet dataset.

Source code in V3_3/src/super_gradients/training/processing/processing.py
751
752
753
754
755
756
757
758
759
760
def default_vit_imagenet_processing_params() -> dict:
    """Processing parameters used by ViT for training resnet on Imagenet dataset."""
    image_processor = ComposeProcessing(
        [Resize(size=256), CenterCrop(size=224), StandardizeImage(), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ImagePermute()]
    )
    params = dict(
        class_names=IMAGENET_CLASSES,
        image_processor=image_processor,
    )
    return params

default_yolo_nas_coco_processing_params()

Processing parameters commonly used for training YoloNAS on COCO dataset. TODO: remove once we load it from the checkpoint

Source code in V3_3/src/super_gradients/training/processing/processing.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def default_yolo_nas_coco_processing_params() -> dict:
    """Processing parameters commonly used for training YoloNAS on COCO dataset.
    TODO: remove once we load it from the checkpoint
    """

    image_processor = ComposeProcessing(
        [
            DetectionLongestMaxSizeRescale(output_shape=(636, 636)),
            DetectionCenterPadding(output_shape=(640, 640), pad_value=114),
            StandardizeImage(max_value=255.0),
            ImagePermute(permutation=(2, 0, 1)),
        ]
    )

    params = dict(
        class_names=COCO_DETECTION_CLASSES_LIST,
        image_processor=image_processor,
        iou=0.7,
        conf=0.25,
    )
    return params

default_yolox_coco_processing_params()

Processing parameters commonly used for training YoloX on COCO dataset. TODO: remove once we load it from the checkpoint

Source code in V3_3/src/super_gradients/training/processing/processing.py
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
def default_yolox_coco_processing_params() -> dict:
    """Processing parameters commonly used for training YoloX on COCO dataset.
    TODO: remove once we load it from the checkpoint
    """

    image_processor = ComposeProcessing(
        [
            ReverseImageChannels(),
            DetectionLongestMaxSizeRescale((640, 640)),
            DetectionBottomRightPadding((640, 640), 114),
            ImagePermute((2, 0, 1)),
        ]
    )

    params = dict(
        class_names=COCO_DETECTION_CLASSES_LIST,
        image_processor=image_processor,
        iou=0.65,
        conf=0.1,
    )
    return params

get_pretrained_processing_params(model_name, pretrained_weights)

Get the processing parameters for a pretrained model. TODO: remove once we load it from the checkpoint

Source code in V3_3/src/super_gradients/training/processing/processing.py
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
def get_pretrained_processing_params(model_name: str, pretrained_weights: str) -> dict:
    """Get the processing parameters for a pretrained model.
    TODO: remove once we load it from the checkpoint
    """
    if pretrained_weights == "coco":
        if "yolox" in model_name:
            return default_yolox_coco_processing_params()
        elif "ppyoloe" in model_name:
            return default_ppyoloe_coco_processing_params()
        elif "yolo_nas" in model_name:
            return default_yolo_nas_coco_processing_params()

    if pretrained_weights == "coco_pose" and model_name in ("dekr_w32_no_dc", "dekr_custom"):
        return default_dekr_coco_processing_params()

    if pretrained_weights == "coco_pose" and model_name.startswith("yolo_nas_pose"):
        return default_yolo_nas_pose_coco_processing_params()

    if pretrained_weights == "imagenet" and model_name in {"vit_base", "vit_large", "vit_huge"}:
        return default_vit_imagenet_processing_params()

    if pretrained_weights == "imagenet":
        return default_imagenet_processing_params()

    return dict()