Pre launch callbacks
AutoTrainBatchSizeSelectionCallback
Bases: PreLaunchCallback
AutoTrainBatchSizeSelectionCallback
Modifies cfg.dataset_params.train_dataloader_params.batch_size by searching for the maximal batch size that fits gpu memory/ the one resulting in fastest time for the selected number of train datalaoder iterations. Works out of the box for DDP.
The search is done by running a few forward passes for increasing batch sizes, until CUDA OUT OF MEMORY is raised:
For batch_size in range(min_batch_size:max_batch_size:size_step):
if batch_size raises CUDA OUT OF MEMORY ERROR:
return batch_size-size_step
return batch_size
Example usage: Inside the main recipe .YAML file (for example super_gradients/recipes/cifar10_resnet.yaml), add the following:
pre_launch_callbacks_list: - AutoTrainBatchSizeSelectionCallback: min_batch_size: 128 size_step: 64 num_forward_passes: 10
Then, when running super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=... this pre_launch_callback will modify cfg.dataset_params.train_dataloader_params.batch_size then pass cfg to Trainer.train_from_config(cfg) and training will continue with the selected batch size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_batch_size |
int
|
int, the first batch size to try running forward passes. Should fit memory. |
required |
size_step |
int
|
int, the difference between 2 consecutive batch_size trials. |
required |
num_forward_passes |
int
|
int, number of forward passes (i.e train_loader data iterations inside an epoch). Note that the more forward passes being done, the less the selected batch size is prawn to fail. This is because other then gradients, model computations, data and other fixed gpu memory that is being used- some more gpu memory might be used by the metric objects and PhaseCallbacks. |
3
|
max_batch_size |
int, optional, upper limit of the batch sizes to try. When None, the search will continue until the maximal batch size that does not raise CUDA OUT OF MEMORY is found (deafult=None). |
None
|
|
scale_lr |
bool
|
bool, whether to linearly scale cfg.training_hyperparams.initial_lr, i.e multiply by FOUND_BATCH_SIZE/cfg.dataset_params.train_datalaoder_params.batch_size (default=True) |
True
|
mode |
str
|
str, one of ["fastest","largest"], whether to select the largest batch size that fits memory or the one that the resulted in overall fastest execution. |
'fastest'
|
Source code in V3_2/src/super_gradients/training/pre_launch_callbacks/pre_launch_callbacks.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
PreLaunchCallback
PreLaunchCallback
Base class for callbacks to be triggered, manipulating the config (cfg) prior to launching training, when calling Trainer.train_from_config(cfg).
Source code in V3_2/src/super_gradients/training/pre_launch_callbacks/pre_launch_callbacks.py
22 23 24 25 26 27 28 29 30 31 32 |
|
QATRecipeModificationCallback
Bases: PreLaunchCallback
QATRecipeModificationCallback(PreLaunchCallback)
This callback modifies the recipe for QAT to implement rules of thumb based on the regular non-qat recipe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size_divisor |
int
|
Divisor used to calculate the batch size. Default value is 2. |
2
|
max_epochs_divisor |
int
|
Divisor used to calculate the maximum number of epochs. Default value is 10. |
10
|
lr_decay_factor |
float
|
Factor used to decay the learning rate, weight decay and warmup. Default value is 0.01. |
0.01
|
warmup_epochs_divisor |
int
|
Divisor used to calculate the number of warm-up epochs. Default value is 10. |
10
|
cosine_final_lr_ratio |
float
|
Ratio used to determine the final learning rate in a cosine annealing schedule. Default value is 0.01. |
0.01
|
disable_phase_callbacks |
bool
|
Flag to control to disable phase callbacks, which can interfere with QAT. Default value is True. |
True
|
disable_augmentations |
bool
|
Flag to control to disable phase augmentations, which can interfere with QAT. Default value is False. Example usage: Inside the main recipe .YAML file (for example super_gradients/recipes/cifar10_resnet.yaml), add the following: pre_launch_callbacks_list: - QATRecipeModificationCallback: batch_size_divisor: 2 max_epochs_divisor: 10 lr_decay_factor: 0.01 warmup_epochs_divisor: 10 cosine_final_lr_ratio: 0.01 disable_phase_callbacks: True disable_augmentations: False USE THIS CALLBACK ONLY WITH Trainer.quantize_from_config |
False
|
Source code in V3_2/src/super_gradients/training/pre_launch_callbacks/pre_launch_callbacks.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
|
modify_params_for_qat(training_hyperparams, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params, quantization_params=None, batch_size_divisor=2, max_epochs_divisor=10, lr_decay_factor=0.01, warmup_epochs_divisor=10, cosine_final_lr_ratio=0.01, disable_phase_callbacks=True, disable_augmentations=False)
This method modifies the recipe for QAT to implement rules of thumb based on the regular non-qat recipe. It does so by manipulating the training_hyperparams, train_dataloader_params, val_dataloader_params, train_dataset_params, val_dataset_params. Usage: trainer = Trainer("test_launch_qat_with_minimal_changes") net = ResNet18(num_classes=10, arch_params={}) train_params = {...}
train_dataset_params = {
"transforms": [...
]
}
train_dataloader_params = {"batch_size": 256}
val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
val_dataloader_params = {"batch_size": 256}
train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
trainer.train(
model=net,
training_params=train_params,
train_loader=train_loader,
valid_loader=valid_loader,
)
train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
)
train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
trainer.qat(
model=net,
training_params=train_params,
train_loader=train_loader,
valid_loader=valid_loader,
calib_loader=train_loader,
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
val_dataset_params |
Dict, validation dataset_params to be passed to dataloaders.get(...) when instantiating the train dataloader. |
required | |
train_dataset_params |
Dict, train dataset_params to be passed to dataloaders.get(...) when instantiating the validation dataloader. |
required | |
val_dataloader_params |
Dict, validation dataloader_params to be passed to dataloaders.get(...) when instantiating the validation dataloader. |
required | |
train_dataloader_params |
Dict, train dataloader_params to be passed to dataloaders.get(...) when instantiating the train dataloader. |
required | |
training_hyperparams |
Dict, train parameters passed to Trainer.qat(...) |
required | |
quantization_params |
Dict, quantization parameters as passed to Trainer.qat(...). When None, will use the default parameters in super_gradients/recipes/quantization_params/default_quantization_params.yaml |
None
|
|
batch_size_divisor |
int
|
Divisor used to calculate the batch size. Default value is 2. |
2
|
max_epochs_divisor |
int
|
Divisor used to calculate the maximum number of epochs. Default value is 10. |
10
|
lr_decay_factor |
float
|
Factor used to decay the learning rate, weight decay and warmup. Default value is 0.01. |
0.01
|
warmup_epochs_divisor |
int
|
Divisor used to calculate the number of warm-up epochs. Default value is 10. |
10
|
cosine_final_lr_ratio |
float
|
Ratio used to determine the final learning rate in a cosine annealing schedule. Default value is 0.01. |
0.01
|
disable_phase_callbacks |
bool
|
Flag to control to disable phase callbacks, which can interfere with QAT. Default value is True. |
True
|
disable_augmentations |
bool
|
Flag to control to disable phase augmentations, which can interfere with QAT. Default value is False. |
False
|
Returns:
Type | Description |
---|---|
modified (copy) training_hyperparams, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params |
Source code in V3_2/src/super_gradients/training/pre_launch_callbacks/pre_launch_callbacks.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|