Pose estimation modules
LightweightDEKRHead
Bases: BaseDetectionModule
Prediction head for pose estimation task that mimics approach from DEKR (https://arxiv.org/abs/2104.02300) paper, but does not use deformable convolutions.
This head takes single feature map of [B,C,H,W] shape as input and outputs a tuple of (heatmap, offset): - heatmap (B, NumJoints+1,H * upsample_factor, W * upsample_factor) - offset (B, NumJoints*2, H * upsample_factor, W * upsample_factor)
Source code in V3_2/src/super_gradients/modules/pose_estimation_modules.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
__init__(in_channels, feature_map_index, num_classes, heatmap_channels, offset_channels_per_joint, activation, upscale_factor=1)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels |
List[int]
|
Number of input channels. |
required |
num_classes |
int
|
Number of joints to regress. |
required |
heatmap_channels |
int
|
Number of embedding dim for heatmap branch. |
required |
offset_channels_per_joint |
int
|
Number of embedding dim for offset branch per each keypoint. Reasonable value is around 8 - 16. |
required |
activation |
Type[nn.Module]
|
Activation type used in both branches. |
required |
upscale_factor |
int
|
Upsample factor for produced feature maps. This is useful when you have feature map of stride 8 as input and want to produce output feature maps of stride 4. Upsampling happens before last 1x1 convolution. |
1
|
Source code in V3_2/src/super_gradients/modules/pose_estimation_modules.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|