Repvgg block
RepVGGBlock
Bases: nn.Module
Repvgg block consists of three branches 3x3: a branch of a 3x3 Convolution + BatchNorm + Activation 1x1: a branch of a 1x1 Convolution + BatchNorm + Activation no_conv_branch: a branch with only BatchNorm which will only be used if input channel == output channel and use_residual_connection is True (usually in all but the first block of each stage)
Source code in V3_1/src/super_gradients/modules/repvgg_block.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
__init__(in_channels, out_channels, stride=1, dilation=1, groups=1, activation_type=nn.ReLU, activation_kwargs=None, se_type=nn.Identity, se_kwargs=None, build_residual_branches=True, use_residual_connection=True, use_alpha=False)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels |
int
|
Number of input channels |
required |
out_channels |
int
|
Number of output channels |
required |
activation_type |
Type[nn.Module]
|
Type of the nonlinearity |
nn.ReLU
|
se_type |
Type[nn.Module]
|
Type of the se block (Use nn.Identity to disable SE) |
nn.Identity
|
stride |
int
|
Output stride |
1
|
dilation |
int
|
Dilation factor for 3x3 conv |
1
|
groups |
int
|
Number of groups used in convolutions |
1
|
activation_kwargs |
Union[Mapping[str, Any], None]
|
Additional arguments for instantiating activation module. |
None
|
se_kwargs |
Union[Mapping[str, Any], None]
|
Additional arguments for instantiating SE module. |
None
|
build_residual_branches |
bool
|
Whether to initialize block with already fused paramters (for deployment) |
True
|
use_residual_connection |
bool
|
Whether to add input x to the output (Enabled in RepVGG, disabled in PP-Yolo) |
True
|
use_alpha |
bool
|
If True, enables additional learnable weighting parameter for 1x1 branch (PP-Yolo-E Plus) |
False
|
Source code in V3_1/src/super_gradients/modules/repvgg_block.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
fuse_block_residual_branches()
converts a repvgg block from training model (with branches) to deployment mode (vgg like model)
Returns:
Type | Description |
---|---|
Source code in V3_1/src/super_gradients/modules/repvgg_block.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
fuse_repvgg_blocks_residual_branches(model)
Call fuse_block_residual_branches for all repvgg blocks in the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
nn.Module
|
torch.nn.Module with repvgg blocks. Doesn't have to be entirely consists of repvgg. |
required |
Source code in V3_1/src/super_gradients/modules/repvgg_block.py
210 211 212 213 214 215 216 217 218 219 220 221 222 |
|